
1

2

Contents

Foreword ..5

Chapter 1: From AI theory to practice ..7

From early pioneers to modern breakthroughs ...8

Paradigm shift with generative AI ..9

Which AI assistant to choose? ..11

Key takeaways ..17

Chapter 2: Coding with GitHub Copilot Business ...18

Project scope and tool stack ...19

Code completion and suggestions ..21

Refactoring and optimization ...27

Debugging and bug fixing ...36

Key takeaways ..40

Chapter 3: Advanced AI capabilities ...41

AI in software development ...42

AI for DevOps ..55

AI-driven no-code and low-code platforms ..61

Key takeaways ..64

Chapter 4: Collaborative development with AI ..65

Pair programming with AI ...66

Code review and quality assurance ...74

Knowledge sharing and documentation ..78

Key takeaways ..81

3

Chapter 5: Secure use of AI ..82

Privacy and security risks ..83

AI risks mitigation ...84

Key takeaways ..87

Chapter 6: Building AI products from business and user perspectives ..88

Two main ways of using AI ..90

Trust in AI by design ...92

Bias in AI models ..98

Key takeaways ..101

Chapter 7: Intellias AI portfolio ...102

Compl-AI, a solution for ensuring regulatory compliance of business processes103

IntelliAssistant, a platform for enhancing corporate productivity and employee experience ... 104

AI Copilot, a digital assistant for software engineering ..106

Key takeaways ..107

Chapter 8: The future of AI in software development ...108

Emerging trends ...109

Key takeaways ..113

Afterword ...114

4

About the authors
We are the engineering team from Intellias Technology Office, who

participated in the AI Copilot program and contributed to the design
and development of three propitiatory AI-based products: Compl-AI,
IntelliAssistant, and IntelliCopilot. Having contributed to these AI ini-
tiatives in a variety of roles, such as software developers, DevOps
engineers, test automation engineers, product managers, and project
managers. We are excited to share our insights on the opportuni-
ties, risks, and limitations associated with AI technologies in software
engineering.

We hope you enjoy reading this book as much as we enjoyed compil-
ing our findings and exploring the potential of AI.

Denys Babych
Engineering Manager

Illia Diachenko
Head of Web Center of
Excellence

Kateryna Ovechenko
Head of Customer
Experience Center of Excellence

Mykyta Khaustov
Principal JS Engineer

Olha Vdovych
Head of Documentation
Unit

Nikita Postolakii
Head of Excellence

Oleksandr Poliukh
Lead DevOps (AWS)
Engineer

Serhii Seletskyi
Senior Solution Architect

Dmytro Vedetskyi
Head of Cloud and DevOps

Yony Muneton
Senior CRM and Power
Apps Engineer

Roman Kyryliuk
Senior .NET Engineer

Volodymyr Hordiienko
Principal DevOps
Engineer (AWS)

Vasyl Huzinskyi
Manager of Design Unit

Oleksii Bratenkov
Senior Software Engineer
(Java)

Khrystyna Matiitsiv
Visual Designer

https://www.linkedin.com/in/denys-babych/
https://www.linkedin.com/in/illiadiachenko/
https://www.linkedin.com/in/kateryna-ovechenko/
https://www.linkedin.com/in/mykyta-khaustov-17b1b9121/
http://www.linkedin.com/in/olhavdovych
https://www.linkedin.com/in/npostolakiy/
https://www.linkedin.com/in/oleksandr-poliukh/
https://www.linkedin.com/in/sergeyseletsky/
https://www.linkedin.com/in/dmytro-vedetskyi/
https://www.linkedin.com/in/yonym/
https://www.linkedin.com/in/kyryliukroma/
https://www.linkedin.com/in/volodymyrhordiienko/
https://www.linkedin.com/in/vasyl-huzinskyi/
https://www.linkedin.com/in/oleksii-bratenkov-45ba508a/
https://www.linkedin.com/in/christina-matiitsiv/

5

Welcome to the world of AI-assisted coding! In this “AI engineering
productivity cookbook”, we have collected practical insights and findings
on the use of AI in software development. Over the past four months,
Intellias has leveraged AI-assisted services to energize its software devel-
opment processes, measure productivity gains, and make efficiency
improvements across various verticals.

Our experience shared in this book comes from the successful imple-
mentation and ongoing rollout of the AI Copilot program. This program,
which is integral to Intellias’ AI-assisted engineering efforts, encompasses
both internal research and development projects as well as client engage-
ments across six diverse industry verticals: retail, high tech, financial
services, insurance, travel, healthcare, and internal product development.

The objectives of this program include:

 ໜ Enhancing performance measurement and evaluation

 ໜ Building internal capabilities for Copilot use and knowledge
dissemination

 ໜ Educating engineers on Copilot best practices

 ໜ Collaborating with clients to refine Copilot applications

 ໜ Evaluating security measures

 ໜ Comparing various Copilot offerings on the market

 ໜ Providing recommendations and options for broader company
rollout

As expected the AI Copilot program has yielded remarkable results. It
has significantly increased productivity, with 65% of participating engi-
neers reporting over a 25% increase. Other notable results include:

 ໜ 53% increase in focus on task completion

 ໜ 81% reduction in frustration related to routine tasks

Foreword

6

 ໜ 79% acceleration in information retrieval

 ໜ 51% enhancement in code review efficiency

These improvements underscore Intellias’ commitment to harness-
ing AI technology to cultivate a more efficient and effective engineering
environment. Through the AI Copilot program, Intellias has enhanced cli-
ents’ operational efficiency, reducing time-to-production and significantly
boosting code deployment speeds, leading to a more agile and responsive
development cycle.

Whether you’re an experienced software developer or just getting
started, learning practical applications of AI will help you boost produc-
tivity, making coding easier and more fun. The book will be of interest
to Software Developers, Test Automation Engineers, and DevOps
Engineers, especially those working with Java, JavaScript, and .NET
stacks. In our research, we explore how the integration of top-rated
AI tools such as GitHub Copilot Business, Tabnine, and Amazon
CodeWhisperer as well as our propitiatory coding assistant can
optimize the development workflow in terms of comfort level and oppor-
tunities in code documentation, debugging, predicting potential bugs, and
optimizing code efficiency.

For organizations considering introducing AI tools, this book will
showcase the capabilities and benefits of low-code and no-code sys-
tems, accelerating software development across various roles and
methodologies.

With the promise of AI-driven innovation and acceleration comes the
responsibility to address ethical, security, and compliance considerations.
We elaborated our own approach to ensuring that AI serves as a cata-
lyst for progress by implementing ethical coding practices and security
measures, as well as bringing to market our own product that checks
the compliance of business processes and systems.

As we prepare for the future of software development, it’s clear that
embracing emerging trends in AI will be key to staying ahead of the curve.
From enhanced code generation and auto-completion to AI-powered
testing and debugging, the possibilities are limitless. By embracing these
trends, we position ourselves to shape the future of technology and drive
innovation in an ever-evolving digital landscape.

So, whether you’re starting on an AI tool selection journey or looking to
take your productivity to the next level, this book will be your companion in
navigating the world of AI-assisted development. Get ready to code faster,
smarter, and better with the power of the right AI tool at your fingertips!

7

The history of technology is the history
of the invention of tools to make
human life easier.”
 – Peter Diamandis

01 From AI theory to practice

8

From early pioneers to modern
breakthroughs

The idea of using computers to generate program code is not entirely
new. Its roots trace back to the early days of computing. In the 1960s,
pioneers in the field of artificial intelligence and computer science started
exploring ways to automate software development tasks, laying the
foundation for what would eventually evolve into generative AI.

One of the earliest attempts to automate programming can be attrib-
uted to Grace Hopper, a pioneering computer scientist known for her
work on the UNIVAC I and COBOL programming languages. Hopper’s
creation of the first compiler in the early 1950s revolutionized soft-
ware development by translating high-level programming languages
into machine code, which automated the process of code translation.

In the late 1960s and early 1970s, researchers such as John
McCarthy, known as the father of AI, and Alan Kay, a pioneer in object-
oriented programming, started investigating the potential of AI
techniques, such as expert systems and rule-based reasoning, to assist
in software development tasks. McCarthy’s work laid the foundation for
symbolic AI, which aimed to mimic human-like reasoning and problem-
solving abilities using symbolic representations and logical inference.

Throughout the 1980s and 1990s, advancements in machine learn-
ing and natural language processing further fueled interest in using AI
for code generation. Researchers explored the application of machine
learning algorithms to program synthesis and experimented with
using NLP techniques to parse and generate code from natural language
specifications.

In the early 2000s, researchers at institutions like MIT and Stanford
began the development of automated programming systems aimed at
the automatic generation of code from high-level specifications or
user demonstrations.

Fast forward to the 2010s, and the advent of deep learning and
neural networks revolutionized the field of AI, enabling significant
breakthroughs in generative models. Key developments, such as the
introduction of recurrent neural networks, long short-term memory
networks, and transformer architectures, paved the way for powerful
generative AI models capable of understanding and generating complex
sequences of data, including code.

In recent years, models like OpenAI’s GPT series have demonstrated
remarkable capabilities in natural language understanding and genera-
tion, including code generation tasks. These models leverage large-scale

9

The adoption of generative AI for code generation holds profound
implications for the IT industry.

 ໜ Cost efficiency in software development. Integrating generative
AI into development workflows can lead to significant cost savings in
software development. By automating repetitive coding tasks, reduc-
ing manual effort, and accelerating development cycles, generative
AI enables companies to optimize resource allocation, minimize over-
head costs, and deliver projects more efficiently. This cost efficiency
can make software development more accessible to a wider range of
organizations, particularly startups and small businesses, changing
the environment and making innovation more achievable for every-
one in the industry.

 ໜ Future development of programming languages. Generative
AI could change how we write, understand, and use programming
languages. As AI-generated code becomes more common, program-
ming languages might adapt to suit AI’s needs, like natural language
processing and machine learning. This could bring new ways of
coding and tools designed to make the most of AI in software devel-
opment, sparking innovation and expanding what we can do with
programming.

Paradigm shift with generative AI

pre-training on vast amounts of text data to learn rich representa-
tions of language and context, enabling them to generate coherent
and contextually relevant code snippets given appropriate prompts.

Overall, while the idea of using computers to generate code has been
explored for decades, recent advancements in AI and machine learning
have brought us closer than ever to realizing the vision of truly intelligent
code generation systems.

10

 ໜ Impact on software development methodologies. IT leaders
must also recognize the transformative impact of generative AI on
software development practices and adjust their approaches accord-
ingly. We need to understand how AI technologies will reshape the
software development lifecycle and popular methodologies like Agile
and Scrum. Future-efficient approaches to software development
will involve tight integration with code generation and analysis tools,
enabling developers to leverage AI-driven insights and automation
throughout the development process.

 ໜ Impact on the workforce and job market. The widespread adop-
tion of generative AI for code generation may lead to significant
changes in the job market for programmers. While AI can auto-
mate coding tasks and boost productivity, there’s a risk that many
programmers may face job displacement. To mitigate this risk and
secure jobs, developers need to proactively develop new skills and
competencies that enable them to collaborate effectively with gen-
erative AI technologies. This entails mastering AI-driven tools and
methodologies such as AI/ML, data science, and machine learning,
understanding how to leverage AI for code generation and analysis,
and adapting to new development paradigms where humans and
AI work in tandem to achieve optimal results. By embracing these
skills, developers can remain indispensable contributors to the soft-
ware development process, ensuring their continued relevance in the
evolving landscape of technology.

In this new paradigm, IT leaders play a crucial role in fostering a cul-
ture of innovation and continuous learning within their teams. They must
provide resources and support for developers to acquire the necessary
skills and adapt to the changing demands of the industry. By utilizing
generative AI and taking care to educate talents to use it effectively, IT
leaders can enhance efficiency, productivity, and competitiveness within
their organizations.

Overall, the adoption of generative AI for code generation has the
potential to transform the IT industry, driving cost efficiency, shaping the
future of programming languages, and influencing the workforce dynam-
ics. By embracing AI-driven technologies, companies can stay ahead of
the curve, unlock new opportunities, and drive innovation in the ever-
evolving IT landscape.

11

Which AI assistant to choose?
Disclaimer
This book presents our sub-
jective insights and practical
findings collected during
our research into AI tools
during the first half of 2024.
As many innovations and
shifts in tooling and tech-
niques occur every month,
this snapshot may have
evolved by the time you
read this book.

The AI tool market is booming, with dozens of companies vying for
prominence with their AI offerings. Given the abundance of options,
let’s evaluate and select the most fitting tool for software development,
whether for organizational or individual needs.

In this book, we compare the power of coding assistants, delving
into their strengths and weaknesses to serve as a compass for those
embarking on the adoption journey. We focus on some of the most
popular choices in the developer community: GitHub Copilot Business,
Tabnine, and Amazon CodeWhisperer. Our goal is to uncover how these
tools help developers overcome coding challenges, from navigating
complex code complications to streamlining unit tests and refactoring.

In this book, we explore how generative AI can enhance software
development across various roles such as software developers, devops
engineers, and quality control engineers (chapters 2 and 3). We delve
into topics related to the collaboration between engineers and gen-
erative AI, analyze its impact on ethical considerations, security, and
user experience (chapters 5 and 6), and contemplate potential future AI
trends in the IT industry (chapter 8).

Assessment metrics
We have selected the three most popular stacks – Java, .NET, and

JavaScript – to assess them from the point of user experience output
quality. Our developers used GitHub Copilot Business, Tabnine, and
Amazon CodeWhisperer for a week, giving feedback on a predefined list
of metrics, which you can see below.

Please note that the metrics that remain unassessed are of very poor
quality.

https://docs.github.com/en/enterprise-cloud@latest/copilot/copilot-business/about-github-copilot-business
https://www.tabnine.com/
https://aws.amazon.com/codewhisperer/

12

Metric GitHub Copilot
Business Tabnine Amazon

CodeWhisperer

Bug fixing measures the AI tool's efficiency in identifying
bugs, errors, and potential vulnerabilities in the code and
suggesting or implementing appropriate fixes. It includes
the AI's ability to understand the context and dependencies
within the code, ensuring that the proposed fixes do not
introduce new issues.

Chat evaluates the AI tool's communication capabilities to
understand complex queries, provide relevant and con-
text-aware responses, and maintain a coherent and logical
dialogue. This involves technical explanations and the ability
to engage in problem-solving discussions, offering alterna-
tive solutions or approaches whenever requested.
Code completion focuses on the AI's ability to predict and
suggest the completion of blocks of code as the developer
types, enhancing coding speed and reducing syntactical
errors. This includes not just the completion of simple state-
ments but also more complex constructs, considering the
local code context, variable types, function signatures, and
even coding style.
Code explanation assesses the AI's ability to provide clear,
concise, and accurate descriptions for blocks of code, includ-
ing its functionality, logic, and known issues. This is crucial for
improving code readability and maintainability and simplifying
the onboarding process for new team members.
Code generation (prompts in chat) evaluates how effectively
the AI tool can produce functional code blocks or entire func-
tions, how it adheres to best practices and generates code
that is not only syntactically correct but also logically sound in
terms of the project's code base and architecture.
Personal satisfaction reflects the user experience and overall
satisfaction with the AI tool. This includes such aspects as
ease of use, integration into your workflow, intuitiveness, the
relevance of provided solutions, and how well the tool meets
your project requirements.
Refactoring evaluates the AI tool's ability to suggest and exe-
cute improvements in the code structure without altering its
external behavior. This includes simplifying complex code,
enhancing readability, reducing redundancy, and adhering to
the SOLID principles, among other best practices, to maintain
and improve the code base's health in the long run.
Testing assesses the AI tool's efficiency in generating test
cases that cover a wide range of inputs and edge cases for
the code, ensuring that the tests are meaningful, relevant,
and comprehensive. It also examines the AI's ability to
understand and implement testing frameworks and meth-
odologies appropriate to each stack.

TOTAL

13

Key features of the winner

As evident from the feedback, developers preferred GitHub Copilot
Business over Tabnine and Amazon CodeWhisperer. Therefore, we will
focus primarily on this tool. While it’s important to note that each tool
possesses unique features that may excel in certain scenarios, GitHub
Copilot Business emerges as the industry standard, consistently excelling
across various aspects.

Dror Weiss, CEO of Tabnine, highlights that in contrast to Copilot’s
monolithic architecture, which can be summarized as a “one model to
rule them all” approach, Tabnine offers a more flexible and decentral-
ized solution. Copilot’s design is inherently centralized, necessitating that
only Microsoft has the capability to both train and host the model due to
the significant computing resources required for these tasks. Tabnine,
however, provides machine learning models of various sizes, ranging
from 400 million to 3 billion parameters. This diversity allows Tabnine to
deploy the optimal model for any given code prediction task, presenting
several key advantages:

 ໜ Types of code suggestions. Unlike Copilot, which is not optimized to
suggest code in the middle of a line, Tabnine’s smaller, more efficient
AI models offer dynamic, real-time feedback as the user types. This
capability ensures that the AI assistance remains in sync with the
user’s workflow.

 ໜ Customizability and training. Copilot uses a universal AI model,
offering the same general assistance derived from an aggregate
of GitHub data to all users, regardless of their project’s specifics.
In contrast, Tabnine’s modular approach facilitates the creation of
personalized AI models. This democratization of AI model creation
empowers teams to train models tailored to their unique needs, sig-
nificantly enhancing the value delivered to their organization.

 ໜ Security and privacy considerations. Tabnine users have the
flexibility to decide where the model runs: in the cloud, on a local
developer machine, or on a self-hosted server through Tabnine
Enterprise. This flexibility is enabled by Tabnine’s efficient AI models,
designed to operate effectively on moderately equipped hardware.

14

Small UI quirks

At first glance, all the applications appear to do the same things, as
their functionalities are quite common. However, each application has
some unique features that set it apart. For example, GitHub Copilot Chat
highlights variables and function names in different colors, which makes
them more readable.

Here is how it appears in GitHub Copilot Business:

GitHub Copilot used @workspace /explain

Used 1 reference >

The provided TypeScript code defines a function named before. This function takes two parameters: n and func. The purpose of this function is to
create a new function that will invoke func only a certain number of times (n times). After func has been invoked n times, subsequent calls to the
created function will return the result of the last invocation of func.

Let’s break down the function:

1. let result; : This line declares a variable result that will be used to store the result of the last invocation of func.

2. if (typeof func ! ‘function’) {...}: This if statement checks if func is a function. If func is not a function, it throws a TypeError.

3. return function (...args) {...}; : This line returns a new function that takes any number of arguments (...args). This is the function that
will be invoked when the returned function is called.

4. Inside the returned function:

• if (--n > 0) {...}: This if statement checks if n is greater than 0. If it is, it decrements n by 1 and then invokes func with the provided arguments
and the same this context. The result of func is stored in result.

• if (n <= = 1) {...}: This if statement checks if n is less than or equal to 1. If it is, it sets func to undefined, effectively preventing func
from being invoked again.

• return result; : This line returns the result of the last invocation of func.

The function before is then exported as a default export, which means it can be imported with any name in another module. This function can be
useful in scenarios where you want to limit the number of times a function can be invoked.

 Can you provide an example of how to use the before function from the lodash library?

GitHub Copilot used @workspace /explain

Used 1 reference >

The provided TypeScript function, transformStringFieldUpdateInput, is an asynchronous function that takes two arguments: input and
transform. The input argument can be of type undefined, string, or an object with an optional set property of type string. The transform
argument is a function that takes a string as input and returns a Promise that resolves to a string.

The purpose of this function is to apply the transform function to the input if it is a string or if it is an object with a set property of type string. The
transformed value is then returned as a Promise.

The function first checks if input is an object and if it has a set property of type string. If both conditions are true, it applies the transform function to
input.set and returns a Promise that resolves to an object with a set property containing the transformed value.

Next, the function checks if input is an object. If it is, but it doesn’t have a set property of type string, the function simply returns the input as is.

If input is not an object, the function checks if it is a string. If it is, it applies the transform function to input and returns a Promise that resolves to the
transformed value.

Finally, if input is neither an object nor a string (which means it must be undefined), the function simply returns the input as is.

This function is likely used in the context of a Prisma application, where the set property is used in update operations to specify the new value for a
field. The transform function could be used to perform operations such as hashing a password before storing it in the database.

 Can you provide an example of how to use the before function from the lodash library?

15

 Tabnine

The selected code defines a function called before that accepts two arguments: n and func. The function returns a new function that invokes func a
maximum of n times. If the number of calls to the restricted function is greater than or equal to n, subsequent calls to the restricted function return the result
of the last func invocation.

The code starts by defining a variable called result and setting its value to undefined. Then, it checks if the value of func is a function and throws a
TypeError if it’s not.

The function then returns a new function that accepts arguments. This inner function starts by decrementing the value of n by 1. If n is greater than 0, it
invokes func with this binding and the arguments passed to the restricted function, and stores the result in result.

The inner function then checks if n is less than or equal to 1. If it is, it sets the value of func to undefined to prevent further invocations.

Finally, the inner function returns result.

The code exports the before function as the default export.

 What happens if the value of ‘n’ is initially set to 0 in the ‘before’ function?

References (1)

1. before.ts: 0-32

 Tabnine

The selected code is a helper function that can be used to transform a string field update input before sending it to the database. It takes two arguments:
input, which can be a string, an object with a set property that is a string, or undefined, and transform, which is a function that takes a string and returns a
Promise that resolves to a transformed string.

The function first checks if the input is an object and if it has a set property that is a string. If so, it returns an object with a set property that is the result of
calling the transform function on the set property.

If the input is not an object or it does not have a set property, the function checks if the input is a string. If so, it returns the result of calling the transform
function on the input string.

If the input is neither an object nor a string, the function returns the input unchanged.

 What is the purpose of the transformString Field UpdateInput function?

References (1)

1. prisma.util.ts:12-28

The code you have selected is a utility function for updating Prisma database fields.

It takes an input value and a transform function as generic type parameters. The transform function allows modifying the value before updating the database
(e.g. hashing a password).

It checks the type of the input and handles different cases:

• If the input is an object with a ‘set’ property, it applies the transform to that property and returns an object of the original type.

• If the input is a string, it applies the transform and returns the result as the original type.

• If the input is another type of object, it simply returns it without modifying.

• For all other types like undefined/null it returns the input unchanged.

This allows updating different field types like single values or nested objects in a consistent way, while applying any transforms before the actual database
update.

The generic typing ensures the returned value is still of the expected original type after the transform.

Let me know if any part needs more explanation!

And Amazon CodeWhisperer gives us this view:

Tabnine looks like this.

16

Another example is how Tabnine offers convenient tiny helpers
above each function – ‘test’, ‘explain’, ‘document’, ‘ask’. These helpers
are always readily accessible, eliminating the need to navigate through
nested menus or type in a chat.

tabnine: test | explain | document | ask

export async function transformStringFieldUpdateInput<
 T extends undefined | string | { set?: string }
>(input: T, transform: (input: string) => Promise<string>): Promise<T> {
 if (typeof input === “object” && typeof input?.set === “string”) {
 return { set: await transform(input.set) } as T;
 }
 if (typeof input === “object”) {
 if (typeof input.set === “string”) {
 return { set: await transform(input.set) } as T;
 }
 return input;
 }
 if (typeof input === “string”) {
 return (await transform(input)) as T;
 }
 return input;
}

Another convenient feature available exclusively in Amazon
CodeWhisperer is tabs in the chat interface. These tabs help users
maintain distinct contexts for each task or question, eliminating the
need to clear the conversation every time they ask something not
related to the previous conversation.

While each tool is worth consideration, our primary focus is on
exploring the functionality of GitHub Copilot Business in more detail
throughout the following chapters.

17

 ໜ Generative AI offers significant cost savings by automating
repetitive coding tasks, reducing manual effort, and accelerating
development cycles.

 ໜ Generative AI has the potential to reshape programming lan-
guages to suit AI’s needs, which could lead to new coding methods
and tools.

 ໜ The widespread adoption of generative AI may lead to changes in
the IT job market.

 ໜ By providing resources and support for developers to acquire AI
skills, IT leaders can enhance productivity and competitiveness
within their organizations.

 ໜ Among the evaluated AI tools, GitHub Copilot Business emerges
as the preferred choice for developers due to its dynamic code
suggestions and customization options.

In the next chapter, we will dive deeper into the capabilities and
benefits of GitHub Copilot Business, exploring its applications across
various roles in software development.

Key takeaways

18

02 Coding with
GitHub Copilot Business

Ultimately, it’s not going to be about
man versus machine. It’s going to be
about man with machines.”
 – Satya Nadella

19

Project scope and tool stack

In this chapter, we showcase the capabilities of GitHub Copilot
Business in AI-assisted development. In addition to exploring the theo-
retical aspects, we also delve into our practical findings obtained while
refactoring the Interview portal—our internal system, with backend
developed with NodeJS and NestJS and frontend built with React.

At Intellias,the Interview Portal facilitates the interviewing of candi-
dates for job openings.. The portal serves as a tool for collecting interview
feedback from both recruiters and technical interviewers, building ana-
lytics on soft and hard skills, giving recommendations on skills gaps,
defining candidate job level, as well as finding applicant feedback records
for further reuse.

As the portal is built with NodeJS and ReactJS, we will give most of
our examples in TypeScript. However, to engage our technical readers
who work with .NET and Java, we will also include examples for these
technologies.

Below you can see the interface of the Interview Portal, whose code
base we explore in more detail in the next sections.

20

21

Code completion and suggestions

GitHub Copilot Business is an AI-powered code completion assistant
designed to enhance coding efficiency, speed, and user experience. The
assistant can suggest entire lines and even blocks of code. What sets
GitHub Copilot Business apart is its sophisticated understanding of the
coding context in which it is deployed. By integrating GitHub Copilot
Business into software development workflows, we embrace a tool that
not only accelerates code production but also elevates the quality of our
output through context-aware assistance.

Let’s get back to refactoring the Interview Portal and start writing
CRUDs for the backend. This involves creating modules, controllers, ser-
vices, and models, which we do using GitHub Copilot Business.

As you can see from the examples, after the developer clicks Tab,
Copilot suggests updates marked in gray that should be added to the file.

After we create a file called Interview.controller.ts and start typing,
Copilot generates a bunch of code for RESTFUL controllers. Copilot is
aware of the context. It understands your stack and suggests highly rel-
evant completions. All we need to do is review the suggestions and press
the Tab button to accept them.

export class InterviewController {
 constructor(private readonly interviewService: InterviewService) {}
 @Get()
 async findAll(): Promise<Interview[]> {
 return this.interviewService.findAll();
 }

 @Get(‘id’)
 async findOne(@Param(‘id’) id: string): Promise<Interview> {
 return this.interviewService.findOne(id);
 }

 @Post()
 async create (@Body() createInterviewDto: CreateInterviewDto): Promise<Interview> {
 return this.interviewService.create(createInterviewDto);
 }

 @Put(‘id’)
 async update(@Param(‘id’) id: string, @Body() updateInterviewDto: UpdateInterviewDto): Promise<Interview> {
 return this.interviewService.update(id, updateInterviewDto);
 }

 @Delete(‘id’)
 async remove (@Param(‘id’) id: string): Promise<void> {
 return this.interviewService.remove(id);
 }
}

TYPESCRIPT

Disclaimer
As you can see from the
examples, after the devel-
oper clicks Tab, Copilot
suggests updates marked
in gray that should be
added to the file.

22

`

package com.example.copilotworkshop.controller;

import com.example.copilotworkshop.model.CreateInterviewDto;

import com.example.copilotworkshop.model.Interview;

import com.example.copilotworkshop.model.UpdateInterviewDto;

import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController

@RequestMapping(“/interviews”)

public class InterviewController {

 private final InterviewService interviewService;

 public InterviewController(InterviewService interviewService) {

 this.interviewService = interviewService;

 }

 @PostMapping

 public Interview createInterview(@RequestBody CreateInterviewDto
 interviewDto) {

 return interviewService.createInterview(interviewDto);

 }

 @PutMapping(“/{id}”)

 public Interview updateInterview(@PathVariable String id,
 @RequestBody UpdateInterviewDto interviewDto) {

 return interviewService.updateInterview(id, interviewDto);

 }

 @DeleteMapping(“/{id}”)

 public void remove(@PathVariable String id) {

 interviewService.removeInterview(id);

 }

 @GetMapping(“/{id}”)

 public Interview findOne(@PathVariable String id) {

 return interviewService.findOne(id);

 }

 @GetMapping

 public List<Interview> findAll() {

 return interviewService.findAll();

 }

using System.Data.Entity;

using WebApplication1.Models;

namespace WebApplication1

{

 public class InterviewRepository

 {

 private readonly InterviewsDbContext _context;

 public InterviewRepository(InterviewsDbContext context)

 {

 _context = context;

 }

 public void Add(InterviewModel interview)

 {

 _context.Interviews.Add(interview);

 _context.SaveChanges();

 }

 public IEnumerable<InterviewModel> GetAll()

 {

 return _context.Interviews.ToList();

 }

 public InterviewModel GetById(int id)

 {

 return _context.Interviews.FirstOrDefault(i => i.Id == id);

 }

 public void Update(InterviewModel interview)

 {

 _context.Entry(interview).State = EntityState.Modified;

 _context.SaveChanges();

 }

 public void Delete(int id)

 {

 var interview = GetById(id);

 _context.Interviews.Remove(interview);

 _context.SaveChanges();

 }

 }

}

JAVA .NET

23

Next, we update the import paths, and it works! Quite impressive, isn’t it?

import {Get, Post, Put, Delete, Param} from ‘@nestjs/common’;

export class InterviewController {
 constructor(private readonly interviewService: InterviewService) {}

 @Get()
 async findAll(): Promise<Interview[]> {
 return this.interviewService.findAll();
 }

 @Get(‘id’)
 async findOne(@Param(‘id’) id: string): Promise<Interview> {
 return this.interviewService.findOne(id);
 }

 @Post()
 async create (@Body() createInterviewDto: CreateInterviewDto): Promise<Interview> {
 return this.interviewService.create(createInterviewDto);
 }

 @Put(‘id’)
 async update(@Param(‘id’) id: string, @Body() updateInterviewDto: UpdateInterviewDto):
 Promise<Interview> {
 return this.interviewService.update(id, updateInterviewDto);
 }

 @Delete(‘id’)
 async remove (@Param(‘id’) id: string): Promise<void> {
 return this.interviewService.remove(id);
 }
}

TYPESCRIPT

24

Let’s explore a slightly more complex scenario: we need to remove a technical interview and store
it in the archive for future reporting needs.

OK, let’s proceed. Imagine that we are developing an interview service and need to filter inter-
views by an applicant’s ID. All we need to do is start typing the method name. Copilot will grasp the
context and provide a suggestion:

import { Interview } from “@interview-portal/lib-interfaces”;

export class InterviewsService {
 private interviews: Interview[] = [];

 filterInterviewsByApplicantId(applicantId: string): Interview[] {
 return this.interviews.filter(interview => interview.applicantId === applicantId);
 }
}

async deleteInterviewAndArchive(
 id: string,
 emplId: string,
): Promise <{id: string; applicantId: string; emplId: string; data: ITechnicalFeedback;}> {
const deletedResource = await this.technicalFeedbacksDbService.deleteInterview(id, emplId);
if(deleteResource) {
 const archivedResource = await this.technicalFeedbacksArchiveDbService.add(deletedResource);
}
 return null;

}

public InterviewModel GetInterview(int id)
{
 return _context.Interviews.FirstOrDefault(i => i.Id == id);
}

public List<Interview> filterInterviewsByApplicantId(String applicantId) {
 return interviews.stream()
 .filter(interview -> interview.getApplicantId().equals(applicantId))
 .toList();
}

TYPESCRIPT
TYPESCRIPT

.N
ET

JAVA

25

Copilot understands pretty well what needs to be done here. You might consider updating the return
values or wrapping this request in a single transaction later, but it has just saved you a few precious
minutes of your time.

Now, let’s delve into the last example, which is backend-specific. Suppose you need to write plain SQL
queries (we’re using CosmosDB for these examples). If Copilot cannot locate the corresponding models
in your project, it suggests a plain SQL query for a method trying to fetch all the recruiter feedback.

async getAll(emplId: string): Promise<
{ id: string; emplId: string; data: IRecruiterFeedback; _ts: number }[]> {
 const { resources } = await this.container.items.query({
 query: `SELECT * from c WHERE c.emplId = “${emplId}”`,
 }).fetchAll();

 return resources;
}

public List<InterviewModel> GetAllInterviews()
{
 List<InterviewModel> interviews = new List<InterviewModel>();
 using (mssqlConnection) {
 mssqlConnection.Open();
 SqlCommand command = new SqlCommand(“SELECT * FROM Interviews”, mssqlConnection);
 using (SqlDataReader reader = command.ExecuteReader()) {
 while (reader.Read()) {
 InterviewModel interview = new InterviewModel();
 interview.Id = reader.GetInt32(0);
 interview.Name = reader.GetString(1);
 interview.Position = reader.GetString(2);
 interview.Date = reader.GetString(3);
 interview.Status = reader.GetString(4);
 interviews.Add(interview);
 } } }
 return interviews;
}

public List<Interview> getAllInterviews() {
 List<Interview> interviews = new ArrayList<>();

 try (Connection connection = DriverManager.getConnection(URL, USER, PASSWORD)) {
 Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery(“SELECT * FROM interviews”);

 while (resultSet.next()) {
 Interview interview = new Interview();
 // Assuming Interview has id, name, and date fields
 interview.setId(resultSet.getString(“id”));
 interview.setName(resultSet.getString(“name”));
 interview.setDate(resultSet.getDate(“date”));
 interviews.add(interview);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 return interviews;
}

TYPESCRIPT
.N

ET
JAVA

26

Let’s explore Copilot’s capabilities in general programming. Imagine that we need to write a sort-
ing algorithm. Most of us can’t remember the exact implementation of every sorting algorithm and
might waste time googling the answer. But not with Copilot! The AI writes the algorithm for you, sav-
ing you a ton of time. Fascinating, isn’t it?

public bubbleSortFeedbacksByTime (feedbacks: any[]) {
 for (let i = 0; i < feedbacks.length; i ++) {
 for (let j = 0; j < feedbacks.length - 1 - i; j++) {
 if (feedbacks[j]._ts < feedbacks[j + 1]._ts) {
 const temp = feedbacks[j];
 feedbacks[j] = feedbacks[j+1];
 feebacks[j+1] = temp;
 }
 }
 }
 return feedbacks;
}

public int[] BubbleSort (int[] arr)
{
 int n = arr.Length;
 for (int i = 0; i < n - 1; i++)
 {
 for (int j = 0; j < n - i - 1; j++)
 {
 if (arr[j] > arr[j + 1])
 {
 // swap temp and arr[j]
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
 }
 return arr;
}

 public int[] bubbleSort (int[] arr) {
 int n = arr.length;
 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
 }
 return arr;
 }

TYPESCRIPT
.N

ET
JAVA

27

Refactoring and optimization

GitHub Copilot Business can assist in pinpointing code smells and
areas that need refactoring. By analyzing the code base, Copilot can sug-
gest improvements such as extracting methods, renaming variables for
clarity, or replacing complex conditional blocks with more readable alter-
natives. Developers can prompt Copilot with comments or questions
about potential refactoring strategies, turning it into an interactive code
review tool.

 ໜ Code simplification. GitHub Copilot Business can suggest more con-
cise and readable versions of existing code blocks, helping reduce
complexity and improve maintainability.

 ໜ Identifying code smells. By analyzing the code context, GitHub
Copilot Business can highlight potential “code smells” — indicators of
deeper problems in the code that may need refactoring. While it does
not explicitly label these issues, its suggestions often lead developers
to recognize and address them.

 ໜ Automated pattern recognition. GitHub Copilot Business identi-
fies repetitive code patterns and suggests ways to abstract them into
reusable functions or components, thereby adhering to the DRY (Do
not repeat yourself) principle.

Let’s examine some practical examples and ask Copilot to refactor the
Interview Portal’s controller, checking the access rights for the users for
CRUD operations. You can do this by opening the prompt and writing
your request there.

28

import { Get, Post, Put, Delete, Param, UseGuards } from ‘@nestjs/common’;
import { AuthGuard } from ‘your-auth-guard-package’;

export class InterviewController {
 constructor(private readonly interviewService: InterviewService) {}

 @Get()
 @UseGuards(AuthGuard)
 async findAll(): Promise<Interview[]> {
 return this.interviewService.findAll();
 }

 @Get(‘id’)
 @UseGuards(AuthGuard)
 async findOne(@Param(‘id’) id: string): Promise<Interview> {
 return this.interviewService.findOne(id);
 }

 @Post()
 @UseGuards(AuthGuard)
 async create (@Body() createInterviewDto: CreateInterviewDto): Promise<Interview> {
 return this.interviewService.create(createInterviewDto);
 }

 @Put(‘id’)
 @UseGuards(AuthGuard)
 async update(@Param(‘id’) id: string, @Body() updateInterviewDto: UpdateInterviewDto): Promise<Interview> {
 return this.interviewService.update(id, updateInterviewDto);
 }

 @Delete(‘id’)
 @UseGuards(AuthGuard)
 async remove (@Param(‘id’) id: string): Promise<void> {
 return this.interviewService.remove(id);
 }
}

TYPESCRIPT

please, refactor this method to check if the user has rights to read, delete, and update
the interviews

Accept Discard 1 change

29

public class InterviewController : Controller {
 public List<InterviewModel> Interviews { get; set; }
 public InterviewModel GetInterview() {
 return new InterviewModel(1, “John Doe”, “Software Developer”, “2021-01-01”, “Scheduled”);
 }
 public InterviewModel GetInterview(int id) {
 return Interviews.FirstOrDefault(x => x.Id == id);
 }
 public void DeleteInterview(int id) {
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 Interviews.Remove(interview);
 }
}

public class InterviewController : Controller
{
 public List<InterviewModel> Interviews { get; set; }

 // Check if the user has rights to read the interview
 [HttpGet]
 public IActionResult GetInterview(int id)
 {
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 if (interview == null)
 {
 return NotFound();
 }

 // Check user rights here

 return Ok(interview);
 }

 // Check if the user has rights to delete the interview
 [HttpDelete]
 public IActionResult DeleteInterview(int id)
 {
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 if (interview == null)
 {
 return NotFound();
 }

 // Check user rights here

 Interviews.Remove(interview);

 return NoContent();
 }

 // Check if the user has rights to update the interview
 [HttpPut]
 public IActionResult UpdateInterview(int id, [FromBody] InterviewModel updatedInterview)
 {
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 if (interview == null)
 {
 return NotFound();
 }

 // Check user rights here

 interview.Name = updatedInterview.Name;
 interview.Position = updatedInterview.Position;
 interview.Date = updatedInterview.Date;
 interview.Status = updatedInterview.Status;

 return Ok(interview);
 }
}

.N
ET (BEFO

RE)
.N

ET (AFTER)

please, refactor this controller to check all the user has rights to read, delete, and
update the interviews

30

package com.example.copilotworkshop.controller;

import com.example.copilotworkshop.model.CreateInterviewDto;
import com.example.copilotworkshop.model.Interview;
import com.example.copilotworkshop.model.UpdateInterviewDto;
import java.util.List;
import lombok.RequiredArgsConstructor;
import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.web.bind.annotation.*;

@RestController
@RequiredArgsConstructor
public class InterviewController {

 private final InterviewService interviewService;

 @PreAuthorize(“hasAuthority(‘READ_INTERVIEW’)”)
 @GetMapping
 public List<Interview> findAll() {
 return interviewService.findAll();
 }

 @PreAuthorize(“hasAuthority(‘READ_INTERVIEW’)”)
 @GetMapping(“/{id}”)
 public Interview findOne(@PathVariable String id) {
 return interviewService.findOne(id);
 }

 @PostMapping
 public Interview createInterview(@RequestBody
 CreateInterviewDto interviewDto) {
 return interviewService.createInterview(interviewDto);
 }

 @PreAuthorize(“hasAuthority(‘UPDATE_INTERVIEW’)”)
 @PutMapping(“/{id}”)
 public Interview updateInterview(@PathVariable String id,
 @RequestBody UpdateInterviewDto interviewDto) {
 return interviewService.updateInterview(id, interviewDto);
 }

 @PreAuthorize(“hasAuthority(‘DELETE_INTERVIEW’)”)
 @DeleteMapping(“/{id}”)
 public void removeInterview(@PathVariable String id) {
 interviewService.removeInterview(id);
 }
}

JAVA

 Github Copilot

Hi @Intellias, how can I help you?

— I’m powered by Al, so surprises and mistakes are
possible. Make sure to verify any generated code or
suggestions, and share feedback so that we can learn and
improve.

 Intellias

Please refactor this controller to check if the user has
rights to read, delete and update the interview. Please use
Spring security

 Github Copilot

To implement the security checks, you can use Spring
Security’s @PreAuthorize annotation. This annotation
can be used to determine if a user has the necessary
permissions to perform certain actions.

First, you need to enable method security in your Spring
Security configuration.

This can be done by adding @EnableGlobalMethodSecurit
y(prePostEnabled = true) to your configuration class.

 How can I define and assign authorities to users in my
user management system?

import org.springframework.security.config.

@EnabLeGlobalMethodSecurity(prePostEnabled
= true)public class SecurityConfig extends

Ask Copilot a question or type ‘/’ for commands

© InterviewController.java

31

Alternatively, we may want to integrate Swagger into our application and document APIs with the
help of Copilot:

please, update this controller with swagger docs

Accept Discard 1 change

import {Get, Post, Put, Delete, Param} from ‘@nestjs/common’;
import {ApiTags, ApiOperation} from “@nestjs/sqagger”;

@ApiTags(“interviews”)
export class InterviewController {
 constructor(private readonly interviewService: InterviewService) {}

 @Get()
 @ApiOperation({ summary: “Get all interviews” })
 async findAll(): Promise<Interview[]> {
 return this.interviewService.findAll();
 }

 @Get(‘id’)
 @ApiOperation({ summary: “Get an interview by ID” })
 async findOne(@Param(‘id’) id: string): Promise<Interview> {
 return this.interviewService.findOne(id);
 }

 @Post()
 @ApiOperation({ summary: “Create a new interview” })
 async create (@Body() createInterviewDto: CreateInterviewDto): Promise<Interview> {
 return this.interviewService.create(createInterviewDto);
 }

 @Put(‘id’)
 @ApiOperation({ summary: “Update an interview by ID” })
 async update(@Param(‘id’) id: string, @Body() updateInterviewDto: UpdateInterviewDto): Promise<Interview> {
 return this.interviewService.update(id, updateInterviewDto);
 }

 @Delete(‘id’)
 @ApiOperation({ summary: “Delete an interview by ID” })
 async remove (@Param(‘id’) id: string): Promise<void> {
 return this.interviewService.remove(id);
 }
}

TYPESCRIPT

32

Impressive, isn’t it? As you can see, Copilot can easily handle these tasks in just a few seconds.
Now, what if we want to do a more complicated refactoring? In the previous section, we were devel-
oping a bubble sorting algorithm for our interviews. As you probably know, its complexity is not
ideal and in most cases equals O(n^2). Let’s ask Copilot to a merge sort algorithm to reduce the
complexity.

update this method to use merge sort sorting algorithm

Accept Discard 1 change

public mergeSortFeedbacks(feedbacks: IFeedback[]): IFeedback[] {
 if(feedbacks.length <= 1) {
 return feedbacks;
 }

 const middle = Math.floor(feedbacks.length / 2);
 const left = feedbacks.slice(0, middle);
 const right = feedbacks.slice(middle);
 return this.merge(
 this.mergeSortFeedbacks(left),
 this.mergeSortFeedbacks(right)
);
}

private merge(left: IFeedback[], right: IFeedback[]): IFeedback[] {
 let result: IFeedback[] = [];
 let leftIndex = 0;
 let rightIndex = 0;
 while(leftIndex < left.length && rightIndex < right.length) {
 if(left[leftIndex].rating >= right[rightIndex].rating) {
 result.push(left[leftIndex]);
 leftIndex++;
 } else {
 result.push(right[rightIndex]);
 rightIndex++;
 }
 }
 result = result.concat(left.slice(leftIndex)).concat(right.slice(rightIndex));
 return result;
}

TYPESCRIPT

33

public int[] MergeSort(int[] arr) {
 if (arr.Length <= 1) {
 return arr;
 }

 int mid = arr.Length / 2;
 int[] left = new int[mid];
 int[] right = new int[arr.Length - mid];
 for (int i = 0; i < mid; i++) {
 left[i] = arr[i];
 }
 for (int i = mid; i < arr.Length; i++) {
 right[i - mid] = arr[i];
 }
 left = MergeSort(left);
 right = MergeSort(right);
 return Merge(left, right);
}

public int[] Merge(int[] left, int[] right) {
 int[] result = new int[left.Length + right.Length];
 int i = 0, j = 0, k = 0;
 while (i < left.Length && j < right.Length) {
 if (left[i] < right[j]) {
 result[k] = left[i];
 i++;
 }
 else {
 result[k] = right[j];
 j++;
 }
 k++;
 }
 while (i < left.Length) {
 result[k] = left[i];
 i++;
 k++;
 }
 while (j < right.Length) {
 result[k] = right[j];
 j++;
 k++;
 }
 return result;
}

.NET (BEFORE) .NET (AFTER)

update this method to use merge sort sorting algorithm

public int[] BubbleSort(int[] arr)
{
 int n = arr.Length;
 for (int i = 0; i < n - 1; i++)
 {
 for (int j = 0; j < n - i - 1; j++)
 {
 if (arr[j] > arr[j + 1])
 {
 // swap temp and arr[j]
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
 }
 return arr;
}

34

JAVA (BEFORE) JAVA (AFTER)
public int[] bubbleSort(int[] arr) {
 int n = arr.length;
 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }
 }
 }
 return arr;
 }

 public int[] mergeSort(int[] arr) {
 if (arr.length <= 1) {
 return arr;
 }
 int midpoint = arr.length / 2;
 int[] left = new int[midpoint];
 int[] right;
 if (arr.length % 2 == 0) {
 right = new int[midpoint];
 } else {
 right = new int[midpoint + 1];
 }
 for (int i = 0; i < midpoint; i++) {
 left[i] = arr[i];
 }
 for (int j = 0; j < right.length; j++) {
 right[j] = arr[midpoint + j];
 }
 int[] result = new int[arr.length];
 left = mergeSort(left);
 right = mergeSort(right);
 result = merge(left, right);
 return result;
 }

 private int[] merge(int[] left, int[] right) {
 int[] result = new int[left.length + right.length];
 int leftPointer, rightPointer, resultPointer;
 leftPointer = rightPointer = resultPointer = 0;
 while (leftPointer < left.length || rightPointer <
 right.length) {
 if (leftPointer < left.length && rightPointer <
 right.length) {
 if (left[leftPointer] < right[rightPointer]) {
 result[resultPointer++] = left[leftPointer++];
 } else {
 result[resultPointer++] = right[rightPointer++];
 }
 } else if (leftPointer < left.length) {
 result[resultPointer++] = left[leftPointer++];
 } else if (rightPointer < right.length) {
 result[resultPointer++] = right[rightPointer++];
 }
 }
 return result;
 }

 Github Copilot

Hi @Intellias, how can I help you?

— I’m powered by Al, so surprises and mistakes are
possible. Make sure to verify any generated code or
suggestions, and share feedback so that we can learn and
improve.

 Intellias

Update a method bubbleSort to use merge sort sorting
algorithm

 Github Copilot

Sure, I can help you with that. Here’s a step-by-step plan:

1. Create a helper method merge that takes two sorted
arrays and merges them into a single sorted array.

2. In the mergeSort method, check if the array length is
less than or equal to 1. If it is, return the array as it is
already sorted.

3. Find the middle index of the array.

4. Recursively call mergeSort on the left half and the right
half of the array.

5. Merge the two sorted halves using the merge method.

Here’s the updated InterviewService class with the
mergeSort method:

It works! We’ve just optimized our code to use a more efficient sorting algorithm.

35

Refactoring and optimization

With GitHub Copilot Business, you can complete complex refactoring
tasks, spanning multiple classes. However, the effectiveness of the tool
in handling such tasks depends on several factors, such as the clarity
of instructions, the complexity of the code base, and the articulation of
required changes through comments and prompts.

GitHub Copilot Business generates code and refactoring suggestions
based on the context provided by the developer. To effectively handle
complex refactoring tasks involving multiple classes, consider these
tips:

 ໜ Break down the task. If the refactoring task is complex and involves multiple
steps or changes across various classes, try breaking it down into smaller,
more manageable tasks. GitHub Copilot Business can be more effective when
dealing with specific, well-defined tasks.

 ໜ Provide clear instructions. When working on a specific refactoring task, pro-
vide clear and concise comments or instructions in your code about what you
want to achieve. GitHub Copilot Business uses the context provided by these
instructions to generate relevant code suggestions.

 ໜ Iterative refinement. You might not get the perfect solution in the first
attempt. Use GitHub Copilot Business suggestions as a starting point and iter-
atively refine the code. You can adjust the instructions or comments based on
the suggestions provided by Copilot to guide it towards the desired outcome.

 ໜ Manual review and testing. After using GitHub Copilot Business for refac-
toring, manually review the suggested changes and thoroughly test the
refactored code. This ensures that the refactoring does not introduce any
bugs or regressions and the code’s readability, maintainability, and perfor-
mance are improved.

 ໜ Leverage other tools. For complex refactoring tasks, consider using GitHub
Copilot Business in conjunction with other tools and IDE features designed for
refactoring. Many IDEs feature powerful refactoring tools designed specifically
for languages such as Java, which can help automate certain aspects of the
refactoring process.

Summing up, GitHub Copilot Business can assist with complex
refactoring tasks, including those involving multiple classes. However,
ensuring the quality and integrity of the refactored code requires clear
instructions, iterative refinement, and a combination of tools and man-
ual review.

36

Debugging and bug fixing

GitHub Copilot Business can spot potential bugs in real-time as devel-
opers write and execute code. By analyzing the context and common
coding patterns, Copilot can suggest corrections and improvements on
the fly, while also understanding the root causes of various application
issues.

Let’s consider this scenario: we are developing the Applicant results
module, which collates various data pieces such as self-evaluation, man-
ager feedback, interview results, and more. While adding numerous
services, controllers, and external libraries, we suddenly encounter an
error shown in the console (NestJS-specific):

If you are not very familiar with
NestJS, figuring out what’s wrong can
be challenging. However, there’s a
simple solution: just select the error
from the terminal and ask Copilot to
explain it.

[Nest] 17652 - 03/24/2024, 1:55:24 PM LOG [InstanceLoader] CacheModule dependencies initialized +3ms
[Nest] 17652 - 03/24/2024, 1:55:24 PM LOG [InstanceLoader] CacheModule dependencies initialized +0ms
[Nest] 17652 - 03/24/2024, 1:55:24 PM ERROR [ExceptionHandler] Nest can’t resolve dependencies of the
ApplicantResultsService (CACHE_MANAGER, ApplicantResultsDbService, LoggerService, ?, ApplicantsDbService).
Please make sure that the argument EmployeesDbService at index [3] is available in the ApplicantResultsModule
context.

Potential solutions:
- Is ApplicantResultsModule a valid NestJS module?
- If EmployeesDbService is a provider, is it part of the current ApplicantResultsModule?
- If EmployeesDbService is exported from a separate @Module, is that module imported within
ApplicantResultsModule?

@Module({
 imports: [/* the Module containing EmployeesDbService */]
})

37

Ah, right! We have forgotten to include the EmployeesModule in the
imports array of our applicants-result.module.ts file! Now, it should work
perfectly fine!

 Github Copilot used @terminal

The error message from your terminal indicates that NestJS can’t resolve the dependencies of the ApplicantResultsService. Specifically,
it’s having trouble with the EmployeesDbService at index [3].

This usually means that EmployeesDbService is not provided in the ApplicantResultsModule or any of its imported modules.

You can fix this by adding EmployeesDbService to the providers array in the ApplicantResultsModule, or in a module that
ApplicantResultsModule imports. Here’s how you might do this:

If EmployeesDbService is provided in a different module, you’ll need to import that module into ApplicantResultsModule:

In this case, EmployeesModule should look something like this:

@Module({
 providers: [ApplicantResultsService, EmployeesDbService],
})
export class ApplicantResultsModule {}

@Module({
 imports: [EmployeesModule],
 providers: [ApplicantResultsService],
})
export class ApplicantResultsModule {}

@Module({
 providers: [EmployeesDbService],
 exports: [EmployeesDbService],
})
export class EmployeesModule {}

@Module({
 imports: [
 DbModule,
 CoeInfoModule,
 ApplicantsModule,
 CacheModule.register({
 ttl: 60 * 60 * 24 * 7,
 }),
],
 providers: [
 ApplicantResultsService,
 ApplicantResultsDbService,
 ApplicantResultsListener,
],
 controllers: [ApplicantResultsController],
})
export class ApplicantResultsModule {}

38

Let’s move on to the next bug.
We are implementing a feature
that will collect user feedback
about our platform. We prompt
users for feedback once every
two months. Additionally, users
have an option to postpone giving
feedback by 10 days. Visually, the
prompt we are developing resem-
bles the one shown below:

Let’s envision a method that determines whether we need to display
the prompt or not:

async checkIfShouldAskForFeedback(user: IUserMetadataFromContext) {
 const response = {
 shouldProvideFeedback: true,
 };

 const record = await this.feedbackDbService.getLastUserFeedback(user.email);
 const timeout =
 (record.isPostponed ? TIMEOUT_IN_DAYS_FOR_POSTPONED : TIMEOUT_IN_DAYS) * MILLIS_IN_DAYS;
 const lastFeedbackProvidedDate = new Date(record.createdDate).getTime();
 const nextFeedbackExpectedDate = lastFeedbackProvidedDate + timeout;
 if (nextFeedbackExpectedDate - Date.now() > 0) {
 response.shouldProvideFeedback = false;
 }

 return response;
}

39

Let’s ask Copilot to fix the scenario where the last feedback of the current user is missing, particularly
when the user accesses the Interview Portal for the first time. We can use the prompt /fix command.

As you can see, Copilot adds an “if” statement to check if the record exists.
For a more advanced detection of bugs, we can use a new Copilot agent called “@workspace”.

Although the response time of this agent might be a bit slower, the quality and accuracy of the
provided solutions might be better.

Based on our practical experience with GitHub Copilot Business, let’s walk through some key
debugging and bug-fixing best practices:

 ໜ Leverage Copilot to understand bug contexts. Sometimes, the value of GitHub
Copilot Business lies not only in the direct fixing of bugs but also in its ability to
provide context or alternative approaches to a problem. Use it to explore differ-
ent solutions or understand how similar issues have been addressed in other
projects.

 ໜ Collaborate with Copilot on debugging. Treat Copilot as a virtual pair program-
mer. Explain the problem as if you were explaining it to a human collaborator.
Comment on your code with the bug you’re trying to solve or the expected behav-
ior. Copilot’s suggestions can give you fresh perspectives that you might not have
considered.

 ໜ Continuously review and test. Thoroughly review and test every suggestion
provided by GitHub Copilot Business, just like any other code change. Ensure that
the suggested fix not only resolves the bug but also does not introduce any new
issues or dependencies into your code base.

async checkIfShouldAskForFeedback(user: IUserMetadataFromContext) {
 const response = {
 shouldProvideFeedback: true,

 };

 const record = await this.feedbackDbService.getLastUserFeedback(user.email);
 if (record) {
 const timeout = (record.isPostponed ? TIMEOUT_IN_DAYS_FOR_POSTPONED : TIMEOUT_IN_DAYS) * MILLIS_IN_DAYS;
 const lastFeedbackProvidedDate = new Date(record.createdDate).getTime();
 const nextFeedbackExpectedDate = lastFeedbackProvidedDate + timeout;
 if (nextFeedbackExpectedDate - Date.now() > 0) {
 response.shouldProvideFeedback = false;
 } }
 return response;
}

Accept Discard 1 change

/fix

To fix the issue, I would add a null check for the record variable before accessing its properties.

40

Key takeaways

 ໜ Integrating GitHub Copilot Business into the development workflow
serves as a virtual pair programmer, providing real-time guid-
ance, refactoring, and debugging.

 ໜ GitHub Copilot Business provides context-aware code comple-
tions and helps identify code smells, which results in faster
delivery and higher code quality.

 ໜ While handling complex refactoring tasks involving multiple
classes, we recommend breaking down tasks, providing clear
instructions, and combining Copilot’s suggestions with manual
review.

In the next chapter, let’s explore various applications of AI in soft-
ware development, from personal assistance and documentation to
automated testing, DevOps transformation, and the emergence of
AI-driven no-code and low-code platforms.

41

03 Advanced AI capabilities

Progress is impossible without change,
and those who cannot change their
minds cannot change anything.”
 – George Bernard Shaw

42

As we continue with our AI research, it’s clear that GitHub Copilot
Business has very impressive capabilities when working with natural lan-
guage. Let’s explore the capabilities that go beyond real-time suggestions
and fixes, focusing on personal consultation on technical matters, generat-
ing technical documentation, and writing appropriate commit messages
based on recent code changes.

AI in software development

Personal assistance

Imagine that we are starting to develop the Interviewer Portal and
need to decide on which stack to go with: Azure or AWS. Each stack’s
database plays a critical role in this decision.

While resorting to Google for answers is an option, it may entail sift-
ing through a pile of irrelevant, outdated, or overly complex information,
potentially leading to confusion. Let’s try to shorten our journey and ask
Copilot to provide us with a comprehensive summary.

 GitHub Copilot

Used 1 reference >

Cosmos DB is a globally distributed, multi-model database service provided by Microsoft Azure for managing data at a planet-scale.
It’s designed to enable you to write globally distributed applications, hence the name Cosmos.

Here are some of the benefits of Cosmos DB:

1. Global Distribution: You can distribute your data to any number of Azure regions worldwide to ensure your data is close to your users.

2. Multi-Model Support: It supports multiple data models, including key-value, document, column-family, and graph.

3. Multi-API Support: It provides multiple APIs for accessing data including SQL, MongoDB, Cassandra, Tables, or Gremlin.

4. Elastic Scalability: It offers elastic scalability of throughput and storage worldwide.

5. Low Latency: It guarantees low latency reads and writes.

6. Comprehensive SLAs: It offers comprehensive Service Level Agreements (SLAs) for throughput, latency, availability, and consistency.

7. Automatic Indexing: It automatically indexes all data and allows you to use SQL-like language to query it.

What is CosmosDB and which benefits it has

43

After getting an initial overview, we can narrow down our inquiry and
ask Copilot to compare CosmosDB and AWS DynamoDB.

This is a simple example of Copilot’s capabilities as a personal assis-
tant. For more advanced research, please see Chapter 4, where we
explore how Copilot serves as a partner in pair programming, unveiling
new approaches to the software development workflow.

 GitHub Copilot

Used 1 reference >

Sure, here’s a comparison between Azure Cosmos DB and Amazon DynamoDB:

1. Data Model: Cosmos DB supports multiple data models (key-value, document, column-family, and graph), while DynamoDB primarily supports
key-value and document data models.

2. APIs: Cosmos DB provides multiple APIs for data access, including SQL, MongoDB, Cassandra, Tables, or Gremlin. DynamoDB, on the other hand,
provides a proprietary web service API.

3. Global Distribution: Both services offer global distribution, but Cosmos DB allows you to distribute your data to any number of Azure regions
worldwide with a single click. DynamoDB requires you to manage replication across regions manually.

4. Consistency Models: Cosmos DB offers five consistency models (Eventual, Consistent Prefix, Session, Bounded Staleness, and Strong), providing
a flexible approach to consistency based on your application’s needs. DynamoDB offers two consistency models: eventual and strong.

5. Pricing: DynamoDB charges for read/write capacity, storage, and data transfer. Cosmos DB charges for provisioned throughput and consumed
storage.

6. Indexing: Both support automatic indexing of all data. However, in DynamoDB, you need to define secondary indexes to query on attributes
other than the primary key.

7. Serverless: Both offer serverless options, allowing you to pay only for the resources your application actually consumes.

8. Integration: DynamoDB integrates well with other AWS services, while Cosmos DB integrates well with Azure services.

Remember, the best choice between the two depends on your specific use case, the needs of your application, and the cloud platform you’re most
comfortable with.

can you compare it with Amazon DynamoDB?

44

Documentation
We all like to work on well-documented projects. But, when it comes

to writing documentation ourselves, we usually aren’t so keen. In the AI
era, we can delegate this responsibility to Copilot. Now, it’s as simple as
selecting the class or method, opening a prompt, and running the /doc
command!

/**
 * Creates a new interview.
 * @param interview - The interview object to be created.
 * @returns A promise that resolves to the created interview.
 */
async createInterview(interview: InterviewCopy): {
 return this.interviewsDbService.createInterview(interview);
}

/**
 * Retrieves all interviews.
 * @returns A promise that resolves to an array of interviews.
 */
async getInterviews(): {
 return this.interviewsDbService.getInterviews();
}

/**
 * Retrieves an interview by its ID.
 * @param id - The ID of the interview to retrieve.
 * @returns A promise that resolves to the retrieved interview.
 */
async getInterview(id: string): {
 return this.interviewsDbService.getInterview(id);
}

/**
 * Updates an existing interview.
 * @param id - The ID of the interview to update.
 * @param interview - The updated interview object.
 * @returns A promise that resolves to the updated interview.
 */
async updateInterview(id: string, interview: InterviewCopy): {
 return this.interviewsDbService.updateInterview(id, interview);
}

TYPESCRIPT

Accept Discard 1 change

/doc

45

 {
 public List<InterviewModel> Interviews { get; set; }

 [HttpGet]
 [OpenApiOperation(“GetInterview”)]
 [ProducesResponseType(StatusCodes.Status200OK, Type = typeof(InterviewModel))]
 [ProducesResponseType(StatusCodes.Status404NotFound)]
 public IActionResult GetInterview(int id)
 {
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 if (interview == null)
 {
 return NotFound();
 }

 // Check user rights here
 return Ok(interview);
 }

 [HttpDelete]
 [OpenApiOperation(“DeleteInterview”)]
 [ProducesResponseType(StatusCodes.Status204NoContent)]
 [ProducesResponseType(StatusCodes.Status404NotFound)]
 public IActionResult DeleteInterview(int id)
 {

.N
ET (BEFO

RE)

public class InterviewController : Controller

/
doc

explain

fix

help

optimize

tests

/doc CommandAdd documentation comment for this symbol

Explain the code

Propose a fix for problems in the selected code

Get help on Copilot chat

Analyze and improve running time of the selected code

Create unit tests for the selected code

|

46

 public class InterviewController : Controller
 {
 public List<InterviewModel> Interviews { get; set; }

 /// <summary>
 /// Retrieves an interview by its ID.
 /// </summary>
 /// <param name=”id”>The ID of the interview.</param>
 /// <returns>The interview with the specified ID.</returns>
 [HttpGet]
 [OpenApiOperation(“GetInterview”)]
 [ProducesResponseType(StatusCodes.Status200OK, Type = typeof(InterviewModel))]
 [ProducesResponseType(StatusCodes.Status404NotFound)]
 public IActionResult GetInterview(int id)
 {
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 if (interview == null)
 {
 return NotFound();
 }

 // Check user rights here

 return Ok(interview);
 }

 /// <summary>
 /// Deletes an interview by its ID.
 /// </summary>
 /// <param name=”id”>The ID of the interview to delete.</param>
 /// <returns>No content if the interview is successfully deleted, otherwise NotFound.</returns>
 [HttpDelete]
 [OpenApiOperation(“DeleteInterview”)]
 [ProducesResponseType(StatusCodes.Status204NoContent)]
 [ProducesResponseType(StatusCodes.Status404NotFound)]
 public IActionResult DeleteInterview(int id)
 {

.N
ET (AFTER)

47

async checkIfShouldAskForFeedback(user: IUserMetadataFromContext) {

 const response = {
 shouldProvideFeedback: true,
 };

 const record = await this.feedbackDbService.getLastUserFeedback(user.email);

 if(!record) {
 return response;
 }

 const timeout =
 (record.isPostponed ? TIMEOUT_IN_DAYS_FOR_POSTPONED : TIMEOUT_IN_DAYS) * MILLIS_IN_DAYS;

 const lastFeedbackProvidedDate = new Date(record.createdDate).getTime();

 const nextFeedbackExpectedDate = lastFeedbackProvidedDate + timeout;

 if(nextFeedbackExpectedDate - Date.now() > 0) {
 response.shouldProvideFeedback = false;
 }

 return response;

}

 public IActionResult UpdateInterview(int id, [FromBody] InterviewModel updatedInterview)
 {
 //Get the interview by ID
 var interview = Interviews.FirstOrDefault(x => x.Id == id);
 if (interview == null)
 {
 return NotFound();
 }

 // Check user rights here

 interview.Name = updatedInterview.Name;
 interview.Position = updatedInterview.Position;
 interview.Date = updatedInterview.Date;
 interview.Status = updatedInterview.Status;

 return Ok(interview);
 }

TYPESCRIPT
.N

ET

 // check if user has already provided feedback

Below is an example of JSDoc comments. Let’s take a look at how Copilot can generate inline com-
ments for methods in JavaScript and .NET.

48

Another documentation challenge is to ask Copilot to generate a large doc in a README file for
the CRON service that’s responsible for cleaning outdated records from the database.

JAVASCRIPT

 GitHub Copilot

Used 2 reference >

Sure, here’s a brief explanation of how the InterviewCronService works that you can add to your README.md:

This explanation can be added to the README.md file under a new section titled “InterviewCronService”.

InterviewCronService

The `InterviewCronService` is a service in our application that is responsible for cleaning up interview copies
in our database. It uses the NestJS Cron package to schedule this cleanup task to run every day at 2 AM.

How it works

1. The `cleanCopies` method is decorated with the `@Cron(CronExpression.EVERY_DAY_AT_2AM)` decorator, which
schedules it to run at 2 AM every day.

2. When `cleanCopies` runs, it first calls the `getAllRecords` method to fetch all interview copies from the
database. This method fetches records in batches of 10 to avoid loading too many records into memory at once.

3. For each record, it checks if the record’s `createdDate` is more than 30 days ago using the
`checkIfTimeHasPassed` method. If it is, the record is deleted from the database.

4. After all records have been checked and any old records have been deleted, it logs how many items were
deleted.

Error handling

If an error occurs during this process, it is caught and logged, and an event is tracked using the
`LoggerService`.

Dependencies

This service depends on the `InterviewCopyDbService` for interacting with the database, and the `LoggerService`
for logging and event tracking.

document how #file:interview.cron.service.ts works in the file #file:README.md

49

import dayjs from “dayjs”;

export enum TopInterviewersPeriods {
 CurrentMonth = “CurrentMonth”,
 CurrentYear = “CurrentYear”,
 LastWeek = “LastWeek”,
 LastMonth = “LastMonth”,
}

export function getDateForPeriod(period: TopInterviewersPeriods): {from: number; to: number;
} {
 const currentDate = new Date();
 switch (period) {
 case TopInterviewersPeriods.CurrentMonth: {
 return {
 from: dayjs(currentDate).startOf(“month”).valueOf(),
 to: currentDate.valueOf(),
 };
 }
 case TopInterviewersPeriods.CurrentYear: {
 return {
 from: dayjs(currentDate).startOf(“year”).valueOf(),
 to: currentDate.valueOf(),
 };
 }
 case TopInterviewersPeriods.LastWeek: {
 return {
 from: dayjs(currentDate).subtract(1, “week”).valueOf(),
 to: currentDate.valueOf(),
 };
 }
 case TopInterviewersPeriods.LastMonth: {
 const firstDayOfPreviousMonth = dayjs(currentDate)
 .subtract(1, “month”)
 .startOf(“month”);
 const lastDayOfPreviousMonth = dayjs(currentDate)
 .subtract(1, “month”)
 .endOf(“month”);
 return {
 from: firstDayOfPreviousMonth.valueOf(),
 to: lastDayOfPreviousMonth.valueOf(),
 };
 }
 }
}

Automated testing with AI
The situation with tests is pretty much the same as with documen-

tation: nobody likes writing them. But, few would argue that tests
significantly improve software reliability, making it easier to maintain
and refactor. As a result, good test coverage boosts both the developer
experience and code readability, enhancing its quality and credibility.

Let’s explore how Copilot can help us with automated testing.
Imagine there is a util function in our code:

TYPESCRIPT

50

import { getDateForPeriod } from ‘./dates’;

describe(‘getDateForPeriod’, () => {

 it(‘should return the correct date range for CurrentMonth’, () => {

 const result = getDateForPeriod(‘CurrentMonth’);

 const currentDate = dayjs();

 expect(result.from).toBe(currentDate.startOf(‘month’).valueOf());

 expect(result.to).toBe(currentDate.startOf(‘day’).valueOf());

 });

 it(‘should return the correct date range for CurrentYear’, () => {

 const result = getDateForPeriod(‘CurrentYear’);

 const currentDate = dayjs();

 expect(result.from).toBe(currentDate.startOf(‘year’).valueOf());

 expect(result.to).toBe(currentDate.startOf(‘day’).valueOf());

 })

.....

})

TYPESCRIPT

/tests

GitHub Copilot

Sure! Hereʼs an example of how you can write tests for the getDataForPeriod function:

Accept Discard

The function is quite simple. We use it to filter interviews by periods:
current month, current year, and last month. Let’s use our prompt and
ask Copilot to generate tests for this simple file.

51

import dayjs from “dayjs”;
import { getDateForPeriod, TopInterviewersPeriods } from “../utils/dates”;

describe(“getDateForPeriod”, () => {
 const currentDate = new Date();

 it(“should return the correct date range for CurrentMonth”, () => {
 const result = getDateForPeriod(TopInterviewersPeriods.CurrentMonth);
 const expected = {
 from: dayjs(currentDate).startOf(“month”).valueOf(),
 to: currentDate.valueOf(),
 };
 expect(result).toEqual(expected);
 });

 it(“should return the correct date range for CurrentYear”, () => {
 const result = getDateForPeriod(TopInterviewersPeriods.CurrentYear);
 const expected = {
 from: dayjs(currentDate).startOf(“year”).valueOf(),
 to: currentDate.valueOf(),
 };
 expect(result).toEqual(expected);
 });

 it(“should return the correct date range for LastWeek”, () => {
 const result = getDateForPeriod(TopInterviewersPeriods.LastWeek);
 const expected = {
 from: dayjs(currentDate).subtract(1, “week”).valueOf(),
 to: currentDate.valueOf(),
 };
 expect(result).toEqual(expected);
 });

 it(“should return the correct date range for LastMonth”, () => {
 const result = getDateForPeriod(TopInterviewersPeriods.LastMonth);
 const firstDayOfPreviousMonth = dayjs(currentDate)
 .subtract(1, “month”)
 .startOf(“month”);
 const lastDayOfPreviousMonth = dayjs(currentDate)
 .subtract(1, “month”)
 .endOf(“month”);
 const expected = {
 from: firstDayOfPreviousMonth.valueOf(),
 to: lastDayOfPreviousMonth.valueOf(),
 };
 expect(result).toEqual(expected);
 });
});

TYPESCRIPT
After accepting the suggestion and making minor tweaks (typically,

Copilot doesn’t include proper import statements), we get the following
test suite, ready to be executed immediately:

52

import { Injectable } from ‘@nestjs/common’;

import { Cron, CronExpression } from ‘@nestjs/schedule’;

import { InterviewCopyDbService } from ‘./interview-copy.db.service’;

import { InterviewCopy } from ‘@interview-portal/lib-interfaces’;

import { LoggerService } from ‘../logger/logger.service’;

import { EventLogTypes } from ‘../logger/event-log-types’;

const COPY_LIFETIME_IN_DAYS = 30;

const MILLIS_IN_DAYS = 86_400_000;

@Injectable()

export class InterviewCronService {

 constructor(

 private readonly copiesDbService: InterviewCopyDbService,

 private readonly logger: LoggerService,

) {}

 private checkIfTimeHasPassed(copy: InterviewCopy) {

 if (!copy.createdDate) {

 return true;

TYPESCRIPT

As you can see from the example above, testing with Copilot has
never been easier! But what if we have a really complicated class and
need to test some non-trivial behavior? That’s not a problem either.
Just provide more context after running the /test command. Let’s try to
do so using our Interviews CronJob Service and InterviewRepository in
TypeScript:

/tests

Copilot generated code may be incorrect

53

describe(‘InterviewCronService’, () => {

 let service: InterviewCronService;

 let copiesDbService: InterviewCopyDbService;

 let logger: LoggerService;

 beforeEach(async () => {

 const module: TestingModule = await Test.createTestingModule({

 providers: [

 InterviewCronService,

 {

 provide: InterviewCopyDbService,

 useValue: {

 getAll: jest.fn(),

 deleteCopy: jest.fn()

 },

 },

 {

 provide: LoggerService,

 useValue: {

 log: jest.fn(),

 error: jest.fn(),

 trackEvent: jest.fn(),

 },

 },

],

 }).compile();

 service = module.get<InterviewCronService>(InterviewCronService);

 copiesDbService = module.get<InterviewCopyDbService>(InterviewCopyDbService);

 logger = module.get<LoggerService>(LoggerService);

 });

 afterEach(() => {

 jest.clearAllMocks();

 });

TYPESCRIPT
So, what has been generated? First of all, Copilot understood it needed

to mock the dependencies on other services and created the correspond-
ing mocks.

54

describe(‘cleanCopies’, () => {

 it(‘should delete copies that have expired’, async () => {

 const mockRecords = [

 { id: 1, createdDate: new Date(‘2022-01-01’) },

 { id: 2, createdDate: new Date(‘2022-01-02’) },

 { id: 3, createdDate: new Date(‘2022-01-03’) },

];

 const mockDeletedCount = 2;

 jest.spyon(service, ‘getAllRecords’).mockResolvedValue(mockRecords);

 jest.spyon(service, ‘checkIfTimeHas Passed’).mockReturnValue(true);

 jest.spyon(copiesDbService, ‘deleteCopy’).mockResolvedValue();

 await service.cleanCopies();

 expect(service.getAllRecords).toHaveBeenCalled();

 expect(service.checkIfTimeHasPassed).toHaveBeenCalledTimes(mockRecords.length);

 expect(copiesDbService.deleteCopy).toHaveBeenCalledTimes(mockDeletedCount);

 expect(logger.log).toHaveBeenCalledWith(

 `Cleaned interview copies DB. Deleted ${mockDeletedCount} items, finished at ${expect.any(Date)}`,

);

 });

 it(‘should handle errors and log them’, async () => {

 const mockError = new Error(‘Something went wrong’);

 jest.spyon(service, ‘getAllRecords’).mockRejectedValue(mockError);

 jest.spyon(logger, ‘error’).mockImplementation();

 jest.spyon(logger, ‘trackEvent’).mockImplementation();

 await service.cleanCopies();

 expect(service.getAllRecords).toHaveBeenCalled();

 expect(logger.error).toHaveBeenCalledWith(mockError);

 expect(logger.trackEvent).toHaveBeenCalledWith(‘CriticalUnhandledErrorOccurred’, mockError);

 });

});

And what about the help with test cases? Let’s take a look.
Copilot has generated two working test cases: one for a successful exe-

cution and another for an error state. You might have noticed that the
tests are not ideal. Sometimes, Copilot might try to mock private methods
of your class. Other times, it tries to test things that have nothing to do
with your code, such as logger implementation or external services calls.

Nevertheless, even for complex tests, Copilot provides an excellent
starting point. You don’t need to perform any of these tasks manually:
mocking, creating test case logic, searching docs to find the name of a spe-
cific class or method to mock error states—Copilot will handle it for you.

The only thing you need to keep in mind is when dealing with large,
complex tests, it’s important to take an incremental approach, adding com-
plexity and additional context step by step instead of providing a bunch of
text to the Copilot prompt.

TYPESCRIPT

55

Coverage improvements
By scanning the code structure and logic, Copilot can identify areas

where test coverage is insufficient. It then generates additional tests to
fill these gaps. To enhance test coverage, you should adhere to a com-
mon approach, providing precise prompts. A good prompt example
is: “Add one more test when API fails, and the result should throw an
exception.”

Using overly broad prompts may result in useless suggestions, failing
to enhance the quality of test coverage. A bad example that illustrates
this would be: “Add more unit tests, including negative to improve test
coverage as much as possible.”

Practical coding scenarios

As a DevOps Engineer, using a tool like GitHub Copilot Business can
significantly enhance your productivity and efficiency. Let’s explore the
tasks and types of code you can write or automate using Copilot.

While GitHub Copilot Business excels in generating code and program-
ming components, it faces challenges in DevOps and infrastructure-related
functions. As a discipline, DevOps requires a deep understanding of project
architecture, security measures, and infrastructure optimization—factors
that can be too intricate for automation using standard code templates.
Moreover, DevOps solutions rely heavily on context and security needs,
which vary widely among projects. All these factors make Copilot helpful
only in the hands of an experienced DevOps Engineer.

AI for DevOps

56

Scripting for automation: You can use Copilot for writing scripts in various languages, for
example, Bash, PowerShell, or Python. These scripts can automate deployments, manage
servers, or handle cloud resource provisioning.

Known limitations.

• Accuracy and context: Copilot might not
always understand the exact context or
the specific needs of your automation task.
Generated scripts may require significant
review and adjustment.

• Security concerns: Automatically
generated code might inadvertently
include security vulnerabilities, especially
if it suggests patterns or practices that are
outdated or insecure.

Infrastructure as Code (IaC): Use Copilot to help you write IaC for tools such as Terraform,
AWS CloudFormation, or Ansible. It’s particularly useful in defining cloud infrastructure
resources, configuration files, and Kubernetes manifests.

Known limitations.

• Complexity and specificity: For complex
infrastructure setups, Copilot’s suggestions
may not fully grasp the nuances of your
architecture, leading to potentially incorrect
or inefficient configurations.

• Up-to-date practices: The suggestions
might not always reflect the most current
best practices or features of IaC tools,
depending on the training data it was built
on.

Continuous integration and deployment: Employ Copilot for writing and optimizing CI/CD pipeline
configurations. Whether you’re working with GitHub Actions, GitLab CI, Jenkinsfiles, or other systems,
Copilot can provide configuration suggestions and scripts.

Known limitations.

• Tool-specific knowledge: While
Copilot can suggest configurations,
understanding the intricacies of each
CI/CD tool and its ecosystem is crucial
for effective implementation, which
might not be fully covered by Copilot’s
suggestions.

• Custom requirements: Custom or
complex pipeline requirements might
not be accurately captured by Copilot,
requiring manual configuration.

57

Containerization: Use Copilot in crafting Dockerfiles or docker-compose files. It can offer
suggestions for optimizations and best practices in containerization.

Known limitations.

• Optimization and best practices:
Copilot might not always suggest the most
optimized practices for containerization,
particularly for advanced or very specific
use cases.

• Security: Generated Dockerfiles or
compose files might not adhere to security
best practices, requiring thorough review
and adjustments.

Configuration management: With tools like Ansible, Chef, or Puppet, Copilot can help you
write playbooks, recipes, and manifests, while also suggesting improvements or alternative
configuration methods.

Known limitations.

• Specific tool capabilities: Each
configuration management tool has its
own set of capabilities and best practices,
which Copilot might not fully encapsulate
in its suggestions.

• Dynamic environments: Adapting to
highly dynamic or specific environmental
conditions might require a more nuanced
understanding than Copilot can provide.

Monitoring and logging scripts: Copilot can streamline the process of writing scripts for monitoring
and logging your infrastructure and applications.

Known limitations.

• Custom metrics and logs: Tailoring
scripts to monitor and log custom metrics
or specific system behaviors might
go beyond the general suggestions of
Copilot, requiring manual work.

58

Testing: Enhance your testing workflow with Copilot by generating unit tests, integration tests,
and other testing scripts for infrastructure and applications

Known limitations.

• Coverage and complexity: Generating
meaningful tests that cover edge cases or
complex scenarios might be challenging for
Copilot, potentially leading to inadequate
test coverage.

• Tool-specific syntax and practices:
Understanding the nuances of different
testing frameworks and their best practices
might require more than what Copilot can
suggest.

Cloud-specific services: For work involving cloud providers like AWS, Azure, or GCP, Copilot can
assist in writing SDK calls and automation scripts tailored to these platforms.

Known limitations.

• Service complexity: The vast array of
services and their configurations that cloud
providers offer might not be fully covered
or accurately suggested by Copilot.

• API changes: Cloud services evolve rapidly,
and Copilot’s suggestions might not always
align with the latest changes or best
practices.

59

Security automation: Automate security tasks with Copilot’s help in scripting for vulnerability
scanning, certificate renewal, or security policy enforcement.

Known limitations.

• Comprehensive security practices:
Copilot might not be able to fully automate
comprehensive security practices,
especially those that require deep
understanding of the security landscape
and threat modeling. DO not delegate your
security to AI entirely!

Documentation: Copilot can also help you write documentation, providing sample commands,
boilerplate text, and configuration examples.

Known limitations.

• Accuracy and completeness: While
Copilot can document code, ensuring
accuracy, completeness, and alignment
with your specific implementations
requires manual review and enhancement.

60

AI-driven transformation in DevOps
AI is becoming more and more a part of the DevOps world. Let’s

explore its manifold benefits for DevOps Engineers, the latest break-
throughs, the most popular AI tools, potential risks, and future trends.

Breakthroughs

AI is making big changes in DevOps, especially in how tasks are automated and managed. First,
it’s making routine tasks in the CI/CD pipeline, such as building and deploying software, faster
and more automated. This speeds up the whole process of software delivery. Next, AI helps us
manage incidents by using predictive analytics. It can guess when problems might happen, letting
teams solve issues before they cause any downtime. Lastly, AI is enabling systems that can fix
themselves. This means the system can handle common problems on its own, keeping it stable
and running smoothly without needing people to step in all the time.

Toolset

We’re seeing a range of DevOps tools powered by AI that are changing the way teams work. First,
there are monitoring tools that use machine learning. They can look through huge amounts of
data and give useful insights about the health of the system, even predicting issues before they
happen. Then, there are AI-powered chat systems, known as ChatOps platforms. These make it
easier for teams to work together, share information, and get automated help when they need it.
Finally, there’s a growing use of AI in policy enforcement. This means using AI tools to make sure
that the code follows certain rules and security measures throughout its development. All these
tools are making a big difference in how DevOps teams do their jobs.

Benefits

AI is bringing a lot of advantages to DevOps. It’s automating everyday tasks, which means DevOps
Engineers have more time to focus on the big picture and creative parts of their work. Also,
AI helps us make better decisions. With the analytics and insights it provides, teams can use
their resources more effectively and improve how their systems perform. Another big plus is
how AI helps teams collaborate. It’s breaking down barriers between different groups: those
who develop and those who operate the systems, encouraging everyone to communicate and
collaborate more. These benefits are really changing how DevOps teams operate and succeed.

Risks

Using AI in DevOps also brings some risks that need attention. A big concern is the safety
and privacy of data, especially when sensitive information is used in AI algorithms. It’s really
important to have strong security measures in place to protect this data. Then, there’s the issue
of depending too much on automation. While AI is helpful, it’s crucial to keep human oversight,
especially for important decisions. Lastly, integrating AI tools into existing DevOps processes can
be tricky. Finding ways to smoothly blend these tools into current practices is a challenge that
teams need to work on. Addressing these risks is key to making the most of AI in DevOps.

Future

Looking ahead, AI is set to play an even bigger role in DevOps. We expect to see more
advanced integration of AI, bringing in new functions and better ways of working.
Another exciting development could be AI making workflows more personalized. This
means AI could adapt to how each person works and their preferences, making everything
more efficient and user-friendly. Along with these advancements, it’s important to think
about the ethics of using AI. We need to make sure that AI is developed and used in a
way that’s responsible and considers its impact on daily routines in DevOps. Keeping
an eye on these future trends is important as we continue to evolve with AI in the field.
While GitHub Copilot Business serves as a powerful tool for enhancing productivity across a
range of DevOps tasks, its limitations necessitate a careful and considered approach. Relying on
it requires a balance between leveraging its AI-driven capabilities and applying human oversight
to ensure accuracy, security, and alignment with best practices.

61

Low-code AI platforms

Low-code AI platforms provide an environment that allows users to
build AI applications using visual interfaces and minimal coding. These
platforms offer pre-built components, templates, and drag-and-drop
functionality, reducing the complexity of coding tasks. With low-code
platforms, developers can accelerate the development cycle, inte-
grate with existing systems, and focus on business logic rather than on
infrastructure.

Low-code platforms bridge the gap between developers and busi-
ness users, empowering them to collaborate on AI projects. They
enhance productivity by abstracting complex coding tasks, enabling
faster application development and deployment. Such platforms are
beneficial for building AI applications with standard use cases and mod-
erate complexity. Developers with coding expertise can extend the
capabilities of low-code platforms by incorporating custom code when
needed.

No-code AI platforms

No-code AI platforms take the concept of simplicity a step further
by eliminating the need for coding. These platforms focus on enabling
users with minimal technical skills to build and deploy AI applications
through intuitive interfaces, leveraging pre-built components and
automation.

No-code platforms provide simplicity and accessibility, enabling
users to focus on problem-solving rather than coding implementation.
Such platforms are suitable for building AI applications with standard
use cases and limited customization requirements. Developers with
coding expertise can still benefit from no-code platforms by using them
as prototyping tools and building MVPs.

AI has emerged as a transformative technology, empowering businesses
to automate processes, gain insights from data, and drive innovation.
However, developing AI applications traditionally requires extensive cod-
ing knowledge and expertise. With the advent of low-code and no-code
AI-driven platforms, which have democratized AI development, individuals
with varying to no technical backgrounds can also harness the power of AI.

AI-driven no-code and low-code platforms

62

Comparing low- and no-code platforms
Both low- and no-code platforms have distinct advantages and

trade-offs. While low-code solutions require basic coding skills but offer
greater flexibility, no-code platforms eliminate the need for coding but
have some limitations in customization.

Most rated low- and no-code platforms

Low-code platforms strike a balance between coding and simplicity,
providing flexibility and customization options. The choice between
low-code and no-code AI platforms depends on the complexity of the
use case, the level of customization required, the pricing offering, and
the technical skills available within the development team.

Metric Low-code No-code

Technical skill requirement
Basic coding skills are required, but
coding complexity is significantly
reduced.

No coding skills are required,
enabling non-technical users to
develop AI applications.

Flexibility and customization
Offers more flexibility and
customization options through the
inclusion of custom code.

Limited flexibility, as customization
options are often pre-defined and
constrained by the platform.

Development speed

Accelerates development speed
by abstracting complex coding
tasks and providing pre-built
components.

Rapid application development
with minimal time spent on coding,
thanks to visual interfaces and pre-
built components.

Use case complexity
Suitable for applications with
moderate complexity and custom
requirements.

Ideal for standard use cases with
minimal customization needs.

User collaboration

Facilitates collaboration between
developers and business users,
leveraging visual modelling
and shared development
environments.

Enables broader user collaboration,
allowing non-technical users to
actively participate in AI application
development.

63

Amazon SageMaker is a comprehensive machine learning platform
provided by AWS. It offers both low-code and traditional coding options for
building, training, and deploying AI models. SageMaker provides pre-built
algorithms, automatic model tuning, and managed infrastructure to simplify
the development process. It supports a wide range of use cases, such as
recommendation systems, fraud detection, and time series forecasting.

Get started
for free and
request a
pricing quote.

Microsoft Lobe is a no-code AI platform that allows users to build machine
learning models using visual interfaces and simple interactions. It supports
image classification, object detection, and text classification tasks. Lobe
provides an intuitive drag-and-drop interface for data labeling, model training,
and model export. It enables users to deploy models in various formats. The
best part is you can download and install it on your local machine.

Use for free.

Apple CreateML is a no-code AI platform specifically designed for developers targeting
Apple devices. It enables users to train machine learning models using drag-and-drop
interfaces and graphical tools. CreateML focuses on computer vision tasks, natural
language processing, and tabular data analysis. It integrates seamlessly with Apple’s
Core ML framework, allowing developers to deploy models directly on iOS, macOS,
watchOS, and tvOS.

Use for free on
macOS.

Google AutoML is a suite of AI tools that provides both low-code and no-code
options for building custom machine learning models. It simplifies the model
development process by automating tasks such as data pre-processing,
architecture selection, and hyperparameter tuning. Google AutoML offers
specific products for vision, natural language, translation, and tabular data
analysis, making it accessible for developers with varying levels of technical
expertise.

Get started
for free and
request a
pricing quote.

Google Teachable Machine is a no-code AI platform that focuses on
training models for image, sound, and gesture recognition. It uses a simple
interface where users can upload their own datasets and create custom
machine learning models without writing code. Teachable Machine is ideal for
educational purposes, prototyping, and small-scale applications.

Use for free.

Akkio is a low-code AI platform that focuses on automating machine learning
workflows. It allows users to build and deploy AI models without extensive
coding knowledge. Akkio offers a user-friendly interface with drag-and-drop
functionality for data preparation, model training, and deployment. It supports
a wide range of applications, including predictive analytics, natural language
processing, and image recognition.

Check pricing
details.

DataRobot is an automated machine learning platform that combines low-
code and no-code approaches. It offers a visual interface for data preparation
and model building, as well as an automated feature engineering process.
DataRobot automates repetitive tasks like model selection, hyperparameter
tuning, and deployment. It supports a wide range of industries and use cases,
including finance, healthcare, and marketing.

Use 30-day
trial for free
and check
pricing details.

ObviouslyAI is a low-code AI platform focused on automated predictive
analytics. It simplifies the process of building and deploying predictive
models by providing a visual interface and automated machine
learning capabilities. Users can connect their data sources, select target
variables, and let ObviouslyAI handle feature selection, model training,
and deployment. It is suitable for business analytics, sales forecasting,
and customer segmentation.

Use for free.

https://aws.amazon.com/pm/sagemaker/
https://aws.amazon.com/sagemaker/pricing/?p=pm&c=sm&z=2
https://aws.amazon.com/sagemaker/pricing/?p=pm&c=sm&z=2
https://www.lobe.ai/
https://www.lobe.ai/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://developer.apple.com/machine-learning/create-ml/
https://cloud.google.com/automl?hl=en
https://cloud.google.com/automl?hl=en
https://cloud.google.com/automl?hl=en
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/
https://www.akkio.com/
https://www.akkio.com/pricing
https://www.akkio.com/pricing
https://www.datarobot.com/
https://www.datarobot.com/pricing/
https://www.datarobot.com/pricing/
https://www.obviously.ai/
https://www.obviously.ai/

64

Key takeaways

 ໜ GitHub Copilot Business offers personal consultation on techni-
cal matters, generates technical documentation, and writes commit
messages based on recent code changes.

 ໜ Copilot provides comprehensive summaries and comparisons of
technical options, shortening research time and enhancing
decision-making.

 ໜ Copilot improves project documentation quality and test cover-
age with minimal effort from developers.

 ໜ While Copilot is beneficial for many DevOps tasks, its effectiveness
in infrastructure-related functions is limited due to the complex-
ity required.

 ໜ Low-code and no-code platforms allow users with varying techni-
cal skills to build AI applications through visual interfaces and
pre-built components, accelerating development while balancing
flexibility and simplicity.

In the next chapter, let’s explore best practices for the use of AI in pair
programming, code review, quality assurance, and knowledge sharing.

65

The art of programming is the skill of
controlling complexity.
 – Marijn Haverbeke

04 Collaborative
development with AI

66

Pair programming with AI

Imagine yourself facing the challenge of developing a new feature
for our Interview Portal. The feature aims to facilitate hiring decisions
and consists by visualizing interview scores of candidates. The con-
ceptual representation of what such a visualization might look like is
shown below: candidates are scored during interviews, and the portal
defines and visualizes the candidate’s job level depending on the scores
received.

What are your next steps as a software developer? Probably, you
will start googling, diving into dozens of articles to select the best tech-
nologies for the task. After selecting a tool stack, you will create a proof
of concept and get familiar with the chosen technologies. This may
involve hours, if not days, of deciphering complex technical documen-
tation and experimenting with examples that may not precisely fit your
needs. Eventually, you might discover that the initially selected tool
stack is inadequate for the task. While continuing your exploration,
each technology might have its own challenges and uncertainties. But
what about trying to save time and complete the task with the help of
GitHub Copilot Business?

67

 Intellias

need to create advanced visualizations for employee performance metrics using React. What tool should I use and which pros and
cons it have?

 Github Copilot

Used 1 reference >

For creating advanced visualizations in React, you might consider using D3.js or Recharts.

1. D3.js

• Pros:

• Highly flexible and powerful, allowing for the creation of almost any kind of visualization.

• Large community and extensive resources for learning.

• Cons:

• Steeper learning curve compared to other libraries.

• Integration with React can be complex because both manipulate the DOM.

2. Recharts

• Pros:

• Easier to use and learn than D3.js.

• Built specifically for React, so it integrates well.

• Provides a set of modular charting components.

• Cons:

• Less flexible than D3.js, as it’s not possible to create any kind of visualization.

• Smaller community and fewer resources for learning compared to D3.js.

Remember, the best tool depends on your specific needs, such as the complexity of the visualizations you need to create, your team’s
familiarity with these libraries, and the time you have to learn a new tool.

 What are some popular React libraries for handling form validation?

Ask Copilot a question or type ‘/’ for commands

Sounds cool! With Copilot, we will try to bypass hours of tedious
research and gain a comprehensive understanding of the available options
and their benefits. Since we anticipate that the charts might be compli-
cated, flexibility is our first priority, which makes D3 our first choice over
Recharts. So, let’s ask Copilot to explain what D3 entails, assuming we are
not familiar with it.

68

 Intellias

Can you please provide a high level overview of D3 and its capabilities?

 Github Copilot

Used 1 reference >

D3.js, or Data-Driven Documents, is a JavaScript library that allows you to bind arbitrary data to a Document Object Model (DOM), and then
apply data-driven transformations to the document. It’s primarily used for creating complex, dynamic, and interactive data visualizations in
web browsers.

Here are some of its key capabilities:

1. Data Visualization: D3.js provides a wide range of visualization capabilities. You can create bar charts, pie charts, scatter plots, and
much more. It also supports more complex types of visualizations like chord diagrams, treemaps, and force-directed graphs.

2. Data Binding: D3.js allows you to bind data to DOM elements. This means you can create elements and attributes based on your data.

3. Transitions: D3.js supports transitions, which means you can animate changes in your data over time. This is particularly useful for
creating dynamic, interactive visualizations.

4. Interactivity: D3.js supports user interactions. You can create visualizations that respond to user input, like mouse clicks or keyboard
input.

5. Flexibility: D3.js doesn’t provide pre-built charts like some other libraries. Instead, it provides the building blocks to create custom
visualizations. This means it’s more flexible and powerful, but it also has a steeper learning curve.

6. Integration: D3.js can be integrated with other JavaScript frameworks and libraries, like React and Angular, although this can sometimes
be complex due to both D3 and these frameworks wanting to control the DOM.

7. Large Community: D3.js has a large and active community, which means there are plenty of resources for learning and getting help.
There are also many examples of D3.js visualizations available online.

 What are some popular React libraries for creating data visualizations?

Ask Copilot a question or type ‘/’ for commands

A promising start! The library seems to meet our goals. And here comes
the most difficult part: how should we start the development? Should
we read the D3 documentation? Should we google some examples and
code snippets? Or, should we try writing something without understand-
ing exactly how it works? No need—let’s ask Copilot to help us generate a
starting point.

69

 Intellias

Please, provide a code example using react and d3 with the following requirements: generate a horizontal bar chart with the
employee performance levels (0-250 - bad performance, 250-500 - average performance, 500-750 - great performance, 750-1000
- outstanding performance). I should be able to hover at “zone of performance” to see the tooltip with the detailed description of
each level.

 Github Copilot

Used 1 reference >

Here’s a basic example of how you might create a horizontal bar chart with D3.js and React. This example uses the react-tooltip library
for the tooltips.

First, install the necessary dependencies:

Then, create your chart component:

 How can I customize the colors of the bars in the D3.js horizontal bar chart?

Ask Copilot a question or type ‘/’ for commands

We have received some
code! Let’s review what
Copilot has provided.

npm install d3 react-tooltip

import React, { useEffect, useRef } from ‘react’;
import * as d3 from ‘d3’;
import ReactTooltip from ‘react-tooltip’;
const data = [
 { performance: ‘Bad Performance’, range: [0, 250] },
 { performance: ‘Average Performance’, range: [250, 500] },
 { performance: ‘Great Performance’, range: [500, 750] },
 { performance: ‘Outstanding Performance’, range: [750, 1000] },
];

function BarChart() {
 const ref = useRef();

 useEffect(() => {

70

Well, not a bad start, but definitely not what we want to have in the end!
Let’s ask Copilot to refine the implementation further.

 Intellias

Update the #file:Chart.tsx with the following requirements:

1. Add xAxis with the levels of performance with the step === 100

2. Add yAxis with the name of employee (let it be “Anna Brown” for this case)

3. Make this axis labels white color

 Github Copilot

Used 1 reference >

Here’s how you can update your Chart.tsx file to include the x-axis with performance levels and the y-axis with the employee’s name:

 How can I add animation to the bars in React?

Ask Copilot a question or type ‘/’ for commands

import React, { useEffect, useRef } from ‘react’;
import * as d3 from ‘d3’;
import ReactTooltip from ‘react-tooltip’;
const data = [
 { performance: ‘Bad Performance’, range: [0, 250], color: ‘red’ },
 { performance: ‘Average Performance’, range: [250, 500], color: ‘orange’ },
 { performance: ‘Great Performance’, range: [500, 750], color: ‘green’ },
 { performance: ‘Outstanding Performance’, range: [750, 1000], color: ‘blue’ },
];

function BarChart() {
 const ref = useRef<any>();

 useLayoutEffect(() => {
 const svg = d3.select(ref.current as any)
 .attr(‘width’, 800)

71

Now it’s better, but still not ideal. Let’s continue our session with Copilot
and add a few more requirements:

What are we going to get from Copilot?

 Intellias

Let’s update the implementation: #file:Chart.tsx

1. Add margin at the left, so the “Anna Brown” text is fully visible.

2. Add one more bar with for “John Foster”, where performance equals 580 and “Chris Williams”, where performance
equals 270.

3. Sort the employees in ascending order.

make tooltip hoverable using plain d3 (no react-tooltip lib), with different lorem upsum text depending of performance level
#file: Chart.tsx

72

import React, { useLayoutEffect, useRef } from
‘react’;
import * as d3 from ‘d3’;

const data = [
 // Your data here
];

data.sort((a, b) => a.performance - b.performance);
// Sort the data in ascending order

function getColor(performance: number) {
 // Function to get color based on performance
}

function getTooltipText(performance: number) {
 // Function to get tooltip text based on performance
}

function BarChart() {
 const ref = useRef<any>();

 useLayoutEffect(() => {
 const svg = d3.select(ref.current as any)
 .attr(‘width’, 800)
 .attr(‘height’, 330)
 .style(‘margin-left’, ‘100px’);

 const xScale = d3.scaleLinear()
 .domain([0, 1000])
 .range([0, 800]);

 const yScale = d3.scaleBand()
 .domain(data.map(d => d.name))
 .range([0, 300])
 .padding(0.1);

 const xAxis = d3.axisBottom(xScale).ticks(10);
 const yAxis = d3.axisLeft(yScale);

 svg.append(‘g’)
 .attr(‘transform’, ‘translate(0, 300)’)
 .call(xAxis)
 .selectAll(‘text’)
 .attr(‘fill’, ‘white’);

 svg.append(‘g’)
 .call(yAxis)
 .selectAll(‘text’)

 .attr(‘fill’, ‘black’);

const tooltip = d3.select(‘body’).append(‘div’)
 .style(‘position’, ‘absolute’)
 .style(‘color’, ‘black’)
 .style(‘visibility’, ‘hidden’)
 .style(‘background’, ‘white’)
 .style(‘border’, ‘solid’)
 .style(‘border-width’, ‘1px’)
 .style(‘border-radius’, ‘5px’)
 .style(‘padding’, ‘10px’);

 svg.selectAll(‘rect’)
 .data(data)
 .enter()
 .append(‘rect’)
 .attr(‘x’, 0)
 .attr(‘y’, d => yScale(d.name))
 .attr(‘height’, yScale.bandwidth())
 .attr(‘width’, d => xScale(d.performance))
 .attr(‘fill’, d => getColor(d.performance))
 .on(‘mouseover’, function (event, d) {
 })
 .on(‘mousemove’, function (event) {
 })
 .on(‘mouseout’, function () {
 });

 svg.selectAll(‘text.bar’)
 .data(data)
 .enter()
 .append(‘text’)
 .attr(‘class’, ‘bar’)
 .attr(‘x’, d => xScale(d.performance) - 3)
 .attr(‘y’, d => yScale(d.name) + yScale.
bandwidth() / 2)
 .attr(‘dy’, ‘.35em’)
 .text(d => d.name)
 .attr(‘text-anchor’, ‘end’)
 .attr(‘fill’, ‘black’);

 }, []);

 return (
 <div>
 <svg ref={ref} />
 </div>

Here comes the code generated by Copilot. It is not ideal, so you need
to carefully review it and update some ugly parts, such as TS ̀ any` usages
or nullish coalescing.

73

Let’s review the code once again and request Copilot to add some
enhancements: color-code “zones” with interview scores and add some
tweaks to the UI.

 Intellias

can you please add a few zones with different colors: if the performance is between 0 and 100 - Failed with red background,
100 and 175 - Associate level (pink background), 175 and 350 - Junior (yellow background), 350 and 550 - Middle (light green
background), 550 and 675 - Strong Middle (green background), 675 and 800 - Senior (dark green background), 800 and 100 -
Principal (turquoise color).

 Github Copilot

Used 1 reference >

Sure, you can add different zones with different colors by appending rectangles to the SVG before the bars. Here’s how you can do it:

 Intellias

Also, add a vertical deviders with gray dashes lines, corresponding to the borders of each zone

 Github Copilot

Used 1 reference >

To add vertical deviders at the borders of each zone, you can append lines to the SVG. Here’s how you can do it:

Ask Copilot a question or type ‘/’ for commands

const zones = [
 { from: 0, to: 100, color: ‘red’, label: ‘Failed’ },
 { from: 100, to: 175, color: ‘pink’, label: ‘Associate level’ },
 { from: 175, to: 350, color: ‘yellow’, label: ‘Junior’ },
 { from: 350, to: 550, color: ‘lightgreen’, label: ‘Middle’ },
 { from: 550, to: 675, color: ‘green’, label: ‘Strong Middle’ },
 { from: 675, to: 800, color: ‘darkgreen’, label: ‘Senior’ },
 { from: 800, to: 1000, color: ‘turquoise’, label: ‘Principal’ },
];

useLayoutEffect(() => {
 const svg = d3.select(ref.current as any)

 // Add zones
 zones.forEach(zone => {
 svg.append(‘rect’)
 .attr(‘x’, xScale(zone.from))
 .attr(‘y’, 0)

74

After adjusting the colors to match the design specifications, fonts, and
alignment, we finally achieve the intended result.

It’s amazing! We have fully-functional bar charts displaying tooltips with
additional insights on candidates. While this example could be further
elaborated, it clearly illustrates that Copilot can enhance the productivity
of a software developer. Overall, the level of support you can get from
Copilot marks a significant milestone in the software development indus-
try. You always have an assistant at your disposal ready to help you with
any task. Experimenting with D3 without any previous experience could
involve weeks spent trying to grasp how it works, let alone implementing
anything meaningful.

Now, you need an additional 30 minutes to finalize the feature by ask-
ing Copilot the right questions and providing clear instructions on what
needs to be done.

When preparing a big pull request introducing a new feature, software
developers review their code to make sure it is free from extraneous devel-
opment artifacts such as console logs, unused imports or variables, and
unrefactored code segments.

As code review and quality assurance practices are tailored to each
programming language and framework, let’s explore how well Copilot can
help with self-review of a component written in React.

Having taken a closer look at the code below, we spot a couple of
problems:

 ໜ Extremely poor typing. It’s missing altogether.

 ໜ Violations of hook rules, as hooks should not be conditionally invoked.
Dependencies array is empty for useEffect.

 ໜ Key for mapped items is missing.

Code review and quality assurance

75

import React, { useEffect, useState } from “react”;

const INITIAL_TEXT = ‘(Update this please)’;

export const BadComponent: React.FC = (props) => {

 const [items, setItems] = useState([]);

 const [itemsCounter, setItemsCounter] = useState(0);

 if (props.hidden) {

 return null;

 }

 useEffect(() => {

 setItemsCounter(items.length);

 }, []);

 const onAddButtonClick = () => {

 setItems([...items, {id: items.length ? items[items.length - 1].id + 1 : 0, name: INITIAL_TEXT }]);

 };

 const onUpdate = (updatedItem: any) => (e: any) => {

 setItems(items.map((item) => (updatedItem.id === item.id ? { ...item, name: e.target.value } : item)));

 };

 return (

 <>

 <h1>Total number of inputs: {itemsCounter}</h1>

 <button onClick={onAddButtonClick}>Add new input</button>

 {items.map((item) => {

 return <input alue={item.name} onChange={onUpdate(item)} />;

 })}

 </>

);

};

Having identified these issues before creating a merge request,
let’s see what improvements Copilot suggests while refactoring this
component:

Accept Discard 1 change

/fix

To fix the issues in the code, I would refactor the component and address each problem individually.

refactor the component and fix all ugly parts

76

import React, { useEffect, useState } from ‘react’;

const INITIAL_TEXT = ‘(Update this please)’;

interface Props {
 hidden?: boolean;
}

interface Item {
 id: number;
 name: string;
}

export const BadComponent: React.FC<Props> = ({ hidden }) => {
 const [items, setItems] = useState<Item[]>([]);
 const [itemsCounter, setItemsCounter] = useState<number>(0);

 useEffect(() => {
 setItemsCounter(items.length);
 }, [items.length]);

 const onAddButtonClick = () => {
 setItems((prevItems) => [
 ...prevItems,
 { id: prevItems.length ? prevItems[prevItems.length - 1].id + 1 : 0, name: INITIAL_TEXT }
]);
 };

 const onUpdate = (updatedItem: Item) => (e: React.ChangeEvent<HTMLInputElement>) => {
 setItems((prevItems) =>
 prevItems.map((item) =>
 updatedItem.id === item.id ? { ...item, name: e.target.value } : item
)
);
 };

 if (hidden) {
 return null;
 }

 return (
 <>
 <h1>Total number of inputs: {itemsCounter}</h1>
 <button onClick={onAddButtonClick}>Add new input</button>

 {items.map((item) => (
 <input key={item.id} value={item.name} onChange={onUpdate(item)} />
))}
 </>
);
};

Accept Discard Accept or Discard 1 change.

/fix

To fix the issues in the code, I would refactor the component and address each problem individually.

GitHub Copilot

refactor the component and fix all ugly parts

77

As we can see, Copilot managed to identify and fix all the mentioned
issues. So, a “self-review” for any code smells works well in practice and
should be done every time you are ready to create a pull request. On top
of “self-reviews”, Copilot has something more to offer you and your team:
within the context of Git flow, Copilot extends its functionalities to the
following:

 ໜ Writing commit messages, accurately describing the changes made.

 ໜ Following a recent update on GitHub, Copilot Enterprise now supports pull
requests, offering comprehensive support and analytics. It furnishes various
features for describing pull request changes, providing insights into the code,
and highlighting potential issues.

 ໜ Copilot can understand your project’s rules and best practices, suggesting
solutions that adhere to your project’s conventions and standards.

78

Auto-generated documentation

One of the most significant advantages of using an AI copilot is its abil-
ity to automatically generate documentation based on the code base. This
includes not only comments within the code but also external documenta-
tion such as API guides, usage examples, and technical specifications. By
analyzing the structure and functionality of the code, AI copilots can pro-
duce accurate and detailed descriptions, saving developers considerable
time and effort. This auto-generated documentation can then be reviewed
and refined by the team, ensuring clarity and completeness.

Let’s take a look at the code below. It handles API requests and shows
different loaders depending on the request type (MobX example):

For large projects with a huge code base, it is crucial to have rich doc-
umentation and onboarding capabilities for new engineers joining the
team. Even here Copilot can assist you and your teams with the following
features.

Knowledge sharing and documentation

class ApiLoader {
 _loadingRecordIds: LoadingRecord[] = [];

 @computed
 get loadingInfo(): {
 isLoading: boolean;
 activeRequestTypes: Set<LoadingRecordType>;
 } {
 return {
 isLoading: this._loadingRecordIds.length > 0,
 activeRequestTypes: new Set(
 this._loadingRecordIds.map((item) => item.type),
),
 };
 }

 addLoadingRequest(key: string, type: LoadingRecordType): string {
 const id = `${key}__${new Date().getTime()}`;
 this._loadingRecordIds = [...this._loadingRecordIds, { id, type }];
 return id;
 }

 removeRequest(id: string) {
 this._loadingRecordIds = this._loadingRecordIds.filter(
 (item) => item.id !== id,
);
 return this._loadingRecordIds;
 }

 constructor() {
 makeAutoObservable(this);
 }
}

79

/**
 * Represents a class that manages loading requests and provides loading information.
 */
class ApiLoader {
 _loadingRecordIds: LoadingRecord[] = [];

 @computed
 get loadingInfo(): {
 isLoading: boolean;
 activeRequestTypes: Set<LoadingRecordType>;
 } {
 return {
 isLoading: this._loadingRecordIds.length > 0,
 activeRequestTypes: new Set(
 this._loadingRecordIds.map((item) => item.type),
),
 };
 }

 /**
 * Adds a loading request to the loader.
 * @param key - The key associated with the loading request.
 * @param type - The type of the loading request.
 * @returns The unique identifier of the loading request.
 */
 addLoadingRequest(key: string, type: LoadingRecordType): string {
 const id = `${key}__${new Date().getTime()}`;
 this._loadingRecordIds = [...this._loadingRecordIds, { id, type }];
 return id;
 }

 /**
 * Removes a loading request from the loader.
 * @param id - The unique identifier of the loading request to remove.
 * @returns The updated array of loading requests.
 */
 removeRequest(id: string) {
 this._loadingRecordIds = this._loadingRecordIds.filter(
 (item) => item.id !== id,
);
 return this._loadingRecordIds;
 }

 constructor() {
 makeAutoObservable(this);
 }
}

export default new ApiLoader();

You can just use a Copilot prompt and select /doc command to docu-
ment the selected code:

80

Real-time documentation updates
As projects evolve, keeping documentation aligned with the latest

changes can be quite a challenge. In this arena, AI copilots shine by
providing real-time updates to documentation as code changes. This
dynamic approach ensures that documentation reflects the current
state of the project, reducing discrepancies and misunderstandings.
Getting real-time documentation updates also facilitates the onboard-
ing process, as newcomers can substantially reduce the learning curve
and become high-performing contributors much sooner.

In-line documentation of code

AI copilots can enrich the code with in-line documentation, offering
explanations and insights directly within the code base. This in-line
commentary can clarify complex algorithms, explain the purpose of
specific code segments, and highlight the potential impacts of future
changes. Such contextual information enhances understanding and
facilitates more effective collaboration and maintenance.

Interactive documentation and tutorials

AI copilots can also create interactive documentation and tutorials,
offering a more engaging learning experience. These resources include
code snippets, interactive examples, and step-by-step guides tailored
to the developers’ current tasks and projects. By providing a hands-on
learning environment, AI helps developers delve deeper into concepts
and apply them more effectively in their work.

Knowledge base development

In addition to project-specific documentation, AI copilots can con-
tribute to the development of a knowledge base. By aggregating and
organizing information sourced from various projects, AI tools can
help create a centralized repository encompassing best practices, com-
mon patterns, and solutions to recurring issues. This resource proves
invaluable for developers seeking guidance or inspiration, promoting a
culture of knowledge-sharing and continuous learning.

81

 ໜ GitHub Copilot significantly reduces the time and effort required
to explore new technologies and develop features by providing
immediate code suggestions.

 ໜ Copilot assists in refining initial code implementations by generat-
ing improvements based on specific requirements, such as adding
axes to charts or adjusting design elements, ensuring the final out-
put meets the desired standards.

 ໜ Copilot can identify and correct common code issues, such as
poor typing, hook violations, and missing keys in mapped items,
enabling developers to perform thorough self-reviews before creat-
ing pull requests.

 ໜ AI copilots facilitate the creation and maintenance of up-to-date
documentation, including in-line comments, API guides, and tech-
nical specifications, thereby enhancing knowledge sharing and
onboarding for new team members.

In the next chapter, let’s delve into how Intellias mitigates privacy
and security risks while building AI-powered products.

Key takeaways

82

Security is always excessive until it’s not
enough.”
 – Robbie Sinclair

05 Secure use of AI

83

In the world of software development, where innovation drives
progress, the use of AI poses some unique security risks. All interac-
tions, such as entering or copying data from an AI system, create data
that becomes an integral part of the system, ‘enriching’ subsequent
responses with this new knowledge. Therefore, the most prominent
risks associated with the use of AI in software development involves
personal, sensitive, confidential, and corporate data, as well as intel-
lectual property.

Let’s explore each risk in more detail:

 ໜ Data leakage is one of the most significant risks for corporate use
of AI. AI tools are continuously collecting and storing data to teach
their models, which means confidential information, including
Intellectual property, may be leaked by a trained model output.

 ໜ Privacy is another big concern related to personal and sensitive
data, which may be used without appropriate consent. The risk of
this data being leaked may have a significant impact on a company
and its employees, sub-contractors, and contractors.

 ໜ AI outputs may often contain factual errors., which should be antic-
ipated. For example, AI may suggest insecure code if your existing
code base contains security vulnerabilities. Also, both algorithm
design and the choice of training datasets for AI models can cause
inadvertent bias due to unpresentable training datasets. AI tools
imitate learned patterns or use available context without providing
judgment.

 ໜ AI tools may reuse open-source code. Pulled from restric-
tive license code bases, AI-generated code can introduce Public
Software (OSS) and Free Public Software (FOOS) risks to Intellias’ or
our clients’ code repositories.

 ໜ Regulatory compliance risk: The USA and EU are drafting AI legis-
lation, which may restrict or limit the use of AI in some areas.

Privacy and security risks

Disclaimer
In your security prac-
tices, never rely solely
on AI. AI can assist, but
human oversight is
essential to ensure com-
prehensive protection.

84

Understanding the risks and possible consequences, our goal is not only
to harness the power of AI tools but also to mitigate the associated risks.
Let’s delve into some essential strategies on how to mitigate risks when
using AI tools in a corporate environment.

 ໜ Avoid the exposure of sensitive corporate data to public AI plat-
forms. This includes confidential documents, client information, source
code, and non-anonymized user and test data. Opt for secured pro-
prietary AI solutions such as GitHub Copilot Business or proprietary
versions of ChatGPT.

 ໜ Use secured proprietary AI tools when writing code with AI. In
proprietary AI tools, prompts used to generate a suggestion are not
retained, including the code and other context. Prompts are discarded
once a suggestion is returned and are not used for training models,
which provides an added layer of security.

 ໜ Thoroughly review code generated by AI tools. This review should
include verification of architectural patterns and a security assessment
assessment to identify and rectify potential vulnerabilities.

 ໜ Develop clean code and adhere to security coding guidelines
for the development team. We recognize that generative AI coding
assistants lack an understanding of code semantics and solely mimic
patterns from their training data. Thus, it is paramount to provide clear
role models and adhere to established guidelines.

 ໜ Regularly review the licensing terms of libraries, frameworks, and
components used to generate code, as well as the licensing terms of AI
tools and models.

 ໜ Get approval from the client before incorporating any open-source
software (OSS) or free and open-source software (FOSS) into project
environments to mitigate potential legal and compliance risks.

 ໜ Introduce corporate policies on the appropriate use of AI tools.
These policies should highlight key risks and mitigation strategies spe-
cific to the organization’s context, fostering a culture of responsible and
secure AI use.

AI risks mitigation

85

EU Artificial Intelligence Act (AIA)
Following in the footsteps of the General Data Protection Regulation

(GDPR), a new legislation on artificial intelligence – the EU Artificial
Intelligence Act (AIA) – will be introduced in Europe. The implemen-
tation phase, estimated to span two to three years contingent upon
progress in EU institutional negotiations, suggests that the EU Artificial
Intelligence Act may be enacted in 2026 or beyond.

This legislation targets companies that develop AI solutions, man-
dating compliance with rules structured around a four-tiered risk
framework:

Risk tier System types

Unacceptable risk

Systems engaging in prohibited practices such as government-led social scoring, as observed
in China, biometric categorization and instant remote recognition based on sensitive charac-
teristics, subliminal persuasion to influence political preferences without consent, exploiting
vulnerabilities that lead to harmful actions, evaluation of an individual’s emotional state,
indiscriminate collection of facial images for database expansion from the internet or video
surveillance recordings.

High risk
Systems mainly used in critical sectors such as healthcare, transportation, and law enforce-
ment. These systems are assessed for accuracy and protection from cyber threats to reduce
any associated risks.

Limited risk
Less risky systems than the high-risk ones, so they don’t have as many rules to follow. But,
even though they do not need to be assessed as closely, they still have to be clear about how
they work to keep them accountable and trustworthy.

Minimal risk Systems where stakeholders, whether based within or outside the EU, are urged to develop
codes of conduct.

86

Development of an AI solution compliant with the EU AI Act will
require a thorough distribution of responsibilities among specialized
roles. For example, the Compliance team should assess the system
against the EU AI Act Compliance Checker, while the Data Science team
should verify the implementation. Furthermore, the development envi-
ronment should be strengthened with tools to assess crucial aspects
such as ethics and privacy, transparency and bias, fairness, AI explain-
ability, and more.

Feel free to contact the Intellias Sales Department for a demon-
stration, licensing information, and potential discounts to experience
firsthand how Compl-AI can transform your regulatory compliance
challenge.

2

4

3

1

High risk

Most regulated Al systems,
as these have the potential
to cause significant harm if
they fail or are misused, e.g.
if used in law
enforcement or recruiting.

Unacceptable risk

Highest level of risk prohib-
ited in the EU. Includes Al
systems using e.g. sublimi-
nal manipulation or general
social scoring.

Limited risk

Includes Al systems with
a risk of manipulation or
deceit, e.g. chatbots or emo-
tion recognition systems.
Humans must be informed
about their interaction with
the Al.

Minimal risk

All other Al systems, e.g. a
spam filter, which can be
deployed without additional
restrictions.

87

 ໜ The use of AI tools in software development introduces signifi-
cant risks of data leakage, including the exposure of confidential
and sensitive information, potentially impacting companies and
individuals.

 ໜ AI-generated outputs can contain inaccuracies and biases, which
may lead to the suggestion of insecure code or propagate biases
present in training datasets. Human oversight is essential to miti-
gate these risks.

 ໜ AI tools may inadvertently introduce open-source software and
free and open-source software risks due to the reuse of restrictive
licensed code, necessitating thorough review and client approval.

 ໜ Effective risk mitigation includes avoiding exposure of sensitive
data to public AI platforms, using secured proprietary AI tools,
adhering to security coding guidelines, regularly reviewing licensing
terms, and establishing corporate policies for AI use.

 ໜ The upcoming EU Artificial Intelligence Act will impose stringent
compliance requirements on AI systems, particularly those in
high-risk sectors. Organizations must prepare for these regulations
by implementing comprehensive compliance and review processes.

In the next chapter, we will discuss two key ways of using AI, highlight
the importance of building trust in AI by design, and address biases in
AI models.

Key takeaways

88

06 Building AI products
from business and user
perspectives

Trust is the glue of life. It’s the
foundational principle that holds all
relationships.”
 – Stephen Covey

89

Having explored various aspects of the development and capabilities
of AI Copilot, as well as the potential security risks, we are now halfway
through our book. However, this is only part of what product owners,
business analysts, and the development team need to consider. In this
chapter, we will discuss various issues and biases that your product
may encounter in its final stages if they are not addressed early in the
development and design process.

AI product development inherently carries higher risks compared
to traditional, non-AI technology products. These risks extend beyond
concerns about data privacy, spanning critical issues such as algorith-
mic transparency and fostering trust between the product and its
users. Let’s explore these facets in depth to understand the unique
challenges posed by AI technologies.

To begin, the handling of private data by AI systems raises significant
privacy concerns. AI’s reliance on vast datasets for training means that
sensitive information is often at risk of exposure or misuse, posing pro-
found implications for users’ privacy.

Moreover, the opacity of many AI algorithms—often referred to as
“black boxes”—complicates matters further. The lack of transparency
and potential algorithmic biases can obscure the decision-making pro-
cess, making it challenging for users and regulators to understand how
decisions are made. This opacity poses a significant challenge in estab-
lishing trust, which is a cornerstone of the user-product relationship.

Building trust in AI systems is a multifaceted challenge. It entails
ensuring privacy and transparency while demonstrating reliability, fair-
ness, and accountability in the system’s operations. Users need to feel
confident that AI products will consistently act in their best interests,
without introducing unexpected biases or errors.

Addressing these risks is complex and requires a concerted effort
from developers, regulators, and users alike. Effective navigation of
these challenges involves fostering open dialogue, implementing ethi-
cal guidelines, and pursuing technological advancements that enhance
transparency and trust. This section delves into these issues, shedding
light on the intricate balance between innovation and responsibility in
developing AI products from both business and user standpoints.

90

The rapid evolution of AI is reshaping the landscape of work, intro-
ducing two major shifts: automation and augmentation. Automation
involves AI performing repetitive tasks instead of people. On the other
hand, augmentation entails AI helping people perform their jobs more
effectively. Let’s examine how these changes are unfolding, their implica-
tions for jobs, and the potential future outcomes.

AI excels at learning routine tasks that follow predictable pat-
terns. It thrives in roles where consistency and speed are paramount,
such as sorting through large volumes of data or controlling machinery in
manufacturing settings. AI’s proficiency in recognizing patterns improves
with exposure to more examples, enhancing its capabilities over time.

In certain business scenarios, AI replaces human labor. The aim is to
execute tasks faster and more accurately, resulting in cost savings and
improved efficiency. Examples include autonomous vehicles, customer
service chat bots, and automated financial analysis tools. Here, AI strives
to outperform humans, particularly in tasks involving rapid information
processing or decision-making.

However, some tasks require AI to comprehend complex situ-
ations or solve problems like humans. This demands a deeper
understanding, beyond mere pattern recognition. For example, under-
standing nuances in language, humor, or cultural references, as well as
adapting to dynamic environments, presents formidable challenges.
Achieving human-like cognition remains an ongoing pursuit for AI
researchers.

In these scenarios, AI and human capabilities complement each other,
working on common goals as one team. AI may serve as a valuable tool
to augment people. Rather than replacing us, AI assists in performing
tasks more effectively. This includes aiding doctors in medical diagnoses,
suggesting content for writers, or analyzing large datasets to facilitate
decision-making. Such collaboration aims to tackle challenges that may
be too complex or time-consuming for us alone.

Two main ways of using AI

91

Automation reduces dependency on human labor
Automation, powered by AI, eliminates the need for a person to step

in. This includes both simple tasks and more complex ones, such as
reading documents or recognizing objects in pictures. Let’s explore how
automation is changing various industries, expediting certain tasks and
reducing the reliance on human labor.

Our exploration navigates the advantages and intricacies inherent
in this shift, particularly its implications for employment. AI broadens
the horizon of automation possibilities, spanning tasks that range from
computer vision to natural language processing.

A McKinsey study examining 800 different occupations revealed
that 60% of them entail activities with a potential automation rate
exceeding 30%. These activities encompass both physical tasks within
structured environments and tasks revolving around data collection
and processing.

Collaboration of AI and people through
augmentation

Augmentation, in contrast to automation, entails the collaboration
of AI and people. It’s like having a smart assistant who can analyze data
or propose creative solutions at lightning speed. Rather than displacing
jobs, augmentation aims to enhance them, rendering tasks more man-
ageable and effective.

The benefits of human-AI collaboration include the combination of
complementary skill sets and maintaining human oversight of the pro-
cess. This collaboration manifests in numerous applications across
various domains, showcasing its versatility and impact. Let’s walk
though some notable examples that underscore AI’s potential to aug-
ment human capabilities across various sectors:

92

As AI becomes a part of our lives, making sure it’s trustworthy is
super important. Trust by design means making AI in the way that peo-
ple feel safe and confident using it. It’s about being clear on how AI
makes decisions and making sure it treats everyone fairly. Let’s explore
how to build AI that people can trust, focusing on being open and fair.

 ໜ Triage in healthcare settings. AI helps medical professionals pri-
oritize patient care based on severity and urgency.

 ໜ Radiology. AI assists in the analysis of medical images to detect
abnormalities and make diagnosis.

 ໜ Insurance underwriting. AI algorithms help insurance companies
assess risks and determine appropriate coverage for clients.

 ໜ Decision-making. AI provides insights and recommendations to
support strategic and tactical decision-making processes.

 ໜ Medical diagnosis. AI assists healthcare providers in diagnosing
diseases and conditions based on patient data and symptoms.

 ໜ Investment. AI algorithms analyze financial data and market
trends to facilitate investment decisions and optimize portfolio
performance.

Trust in AI by design

Triage

Decision
support

Radiology Insurance underwriting

Medical diagnosis Investing

93

Building trust within your model
In the pursuit of trust, it’s essential to acknowledge the inevitability

of AI model imperfections. By building transparency and clear commu-
nication, users can trust AI systems, despite their flaws. Here’s how to
foster trust and confidence in your AI model:

 ໜ Acknowledge that your model will make mistakes. No AI model
is perfect, and it’s important to be upfront about this. By setting
realistic expectations, users are less likely to be disillusioned when
errors occur.

 ໜ Communicate its performance clearly. Be open about how well
your model performs. Share statistics or success rates that highlight
its reliability in understandable terms. This helps users gauge when
they can rely on it and for what purposes.

 ໜ Show how confident it is in its own decisions. Whenever your
model makes a prediction or a decision, also provide a confidence
score. This tells users how sure the AI is about its output, helping
them make informed decisions on whether to follow the AI’s advice.

 ໜ Explain how it comes to its conclusions. People trust what they
understand. If possible, offer simple explanations for the model’s
decisions. This could be a breakdown of the factors that influenced
a decision or a straightforward explanation of the steps it took.

 ໜ Be honest about its limitations. Every model has its weak points.
By openly discussing these, you encourage users to use the AI
where it’s strongest and avoid areas where it might not perform
well.

 ໜ Keep people in the loop. For critical decisions or when the AI’s con-
fidence is low, having a human review process can boost trust. This
shows users that there’s a safety net to catch errors the AI might
make.

94

Communicating AI performance metrics
In understanding the impact of AI models, it’s crucial to grasp both

the overarching objectives and the specific outputs they generate. Let’s
explore how outcome and output metrics play into the evaluation of AI
performance.

Outcome metrics encompass the broader goals driving the use of
AI within your business or project. Think of them as the ultimate objec-
tives that define success, whether it’s increasing sales, cutting costs, or
enhancing customer satisfaction. These metrics encapsulate the over-
arching benefits AI is expected to deliver, often directly tied to financial
outcomes.

On the other hand, output metrics provide a granular assessment
of the AI model’s performance in executing its designated tasks. Similar
to a report card, these metrics offer insights into how effectively the AI
is accomplishing the specific objectives set for it. For instance, if the AI’s
function involves image recognition, output metrics might quantify its
accuracy in identifying images correctly.

Providing explanations

When the model is off, transparency into model output helps users
understand why it differs from reality. Whenever your model makes a
prediction or decision, it’s helpful to provide a brief explanation that
sheds light on why it made that choice. This can be something like iden-
tifying the key factors or data points that had the biggest impact on the
decision. For example, if your AI recommends a specific type of shoe to
a customer, it could say it made that recommendation because the cus-
tomer often buys that brand or has searched for similar styles recently.

Along with the explanation, show how confident the model is in
its decision by using a percentage. But don’t stop there—also share
what other options were considered and how confident the model was
in those options as well. For example, if the AI is 80% confident in its
first choice, it might also show that there was a second choice it was
60% confident in. This gives users a sense of the model’s certainty and
allows them to see alternatives it considered but deemed less likely.

95

Acknowledging limitations
Admit when the model doesn’t have the answer. It’s really important

to know that AI isn’t perfect. There will be times when your AI model can’t
make a reliable prediction or decision. In those cases, it’s better to be
honest and say the model doesn’t know, rather than guessing and pos-
sibly getting it wrong.

Instead of taking a wild guess and risking a mistake, it’s sometimes
wiser not to give an answer at all. This way, you avoid giving users incor-
rect information, which could lead to confusion or mistakes based on
bad info.

When the AI can’t provide an answer, it doesn’t mean you leave the
user with nothing. You can suggest other ways for them to get the infor-
mation or help they need. This could be directing them to a human
expert, recommending they check out certain resources, or using
another tool better suited for their specific question.

In simple terms, if your AI doesn’t know the answer, it’s best to say so.
Then, try to be helpful by pointing the user towards someone or some-
thing that can help. This honesty not only builds trust but also ensures
that users are not misled by inaccurate information.

Human-in-the-loop

Human-in-the-loop is a key concept in AI development, involving peo-
ple in the validation of AI-generated outcomes. It’s particularly crucial
during the initial stages of AI implementation when the model is honing
its capabilities and prone to mistakes.

We should think of people checking AI’s work like having a teacher
look over a student’s homework. After your AI model makes a decision
or gives an answer, a person checks to make sure it’s correct. This helps
catch any mistakes before they cause problems for users. If a person
spots a mistake, it’s an opportunity to either correct the error directly or
find another way to help the user. For example, if the AI can’t answer a
question correctly, the person checking can provide the right answer or
guide the user to where they can find what they need.

It’s important not to rely on guesswork to decide if the AI is right or
wrong. The person checking the AI’s work should use clear guidelines
and knowledge. This way, the process is systematic and doesn’t add con-
fusion by guessing.

96

Accountability
Accountability is key for ensuring responsible and ethical use of AI.

It entails clarity around who oversees the AI’s actions, mechanisms for
users to address issues, and adherence to established rules and values.

Just like someone is responsible for making sure a car is safe to drive,
there should also be clear responsibility for the AI’s actions and deci-
sions. Knowing who’s in charge means there’s a person or a team you
can point to who makes sure the AI works right and does what it’s
supposed to do. If someone using the AI finds a mistake or an issue,
they should have a way to report it and get it fixed. It’s like knowing
there’s a customer service line or a help desk you can call when some-
thing’s not working.

Let’s explore the top three considerations for accountability in AI.
First of all, it should be clear who is responsible for making sure the AI
does its job well and ethically. Is it the people who made it, the ones who
use it, or someone else?

Another consideration is what rules and values guide the AI. Every
AI system should follow certain rules and values, which could include
fairness, privacy, and not causing harm. These should be based on the
laws of the place it’s used and the moral standards expected by society.

And last but not least, accountability in AI involves providing users
with a course of action if the AI isn’t acting appropriately. If the AI
makes a mistake or acts against its set rules and values, users need to
have a way to fix the situation. This could mean correcting the mistake,
reporting the issue to the authorities, or even getting compensation for
any harm caused.

By addressing these key considerations, we ensure that AI systems
operate ethically, guided by principles of fairness, privacy, and harm
prevention, and that users have avenues for recourse when issues arise.

User onboarding

User onboarding is a critical phase in the implementation of any new
system, especially when it involves AI. Proactive user education plays a
key role in successful change management, ensuring that users not only
understand the value proposition of the AI system but also embrace its
integration into their workflows.

By highlighting the “what’s in it for me” aspect, users are more
likely to perceive the AI system as a valuable asset that will enhance
their daily lives rather than a disruptive force. Additionally, anticipating
and addressing concerns or fears that users may have about the new

97

Transparency

Transparency in the use of data and AI model functioning is key for
ensuring user trust and confidence. When users have visibility into how
their data is being used and understand the inner workings of the mod-
els involved, they feel more reassured in their interactions with the
system. Let’s delve into some effective strategies for achieving trans-
parency in data-driven processes:

 ໜ Using models that users can easily grasp, like decision trees or
linear models, helps them understand how data is used and deci-
sions are made.

 ໜ Breaking down complex algorithms into simpler terms helps
users understand without getting lost in technical details.

 ໜ Showing which input factors are most important in model deci-
sions helps users see what influences outcomes.

 ໜ Describing how changes in input data affect model predictions
helps users understand how the model works in different situations.

technology is crucial for acceptance and reducing resistance during the
onboarding process.

Through clear communication of the value that the AI system will
create and thoughtful consideration of user needs, organizations can
facilitate a smooth transition to AI-powered solutions and maximize
their impact.

Interpretable
models

Feature
importance

Counterfactual
explanations

Simplified
approximations

98

Bias in AI is a big problem. It can lead to unfair decisions or make
some people worse off. We need to be really careful about how AI is
trained and used to avoid these issues.

Let’s explore where these biases come from, how they can affect us,
and what we can do to make AI fairer for everyone. Bypassing biases
will help you create a better AI product, solve the business challenges of
early product deployment, and reduce the associated risks.

Historical bias

The data an AI collects reflects the biases that exist in society at the
time the data was collected. For example, facial recognition technolo-
gies trained on datasets predominantly composed of lighter-skinned
individuals tend to misidentify or fail to recognize people with darker
skin tones, illustrating the bias present in the dataset’s composition.

Algorithmic bias

AI systems are widely regarded as objective tools. However, they
can inadvertently amplify human biases, leading to unfair outcomes.
These biases can manifest in various ways, often impacting marginal-
ized groups disproportionately. Here are the main sources through
which biases can impact AI systems:
 ໜ The personal beliefs and biases of the developers can uninten-

tionally influence the design and function of AI systems. This might
occur during the coding process or through subjective decisions
about which features of the data are most important.

 ໜ This bias may occur depending on how data is collected, selected,
or used to train AI. If the data reflects historical inequalities or lacks
representation from certain groups, the AI will likely replicate these
issues.

 ໜ Sometimes, AI systems are deployed in contexts that were not
anticipated by the developers, leading to unexpected biases. This
can happen when an AI system designed for one purpose is used
for another without considering the different requirements or
impacts on various user groups.

Bias in AI models

99

Representation bias

This issue arises when the data used to train an AI system doesn’t
fully capture the diversity of the group it’s meant to serve. This often
leads to certain segments of the population being under-represented.

For example, if a speech recognition system is mostly trained on
voice data from native English speakers, it might struggle to accurately
recognize accents or dialects from non-native speakers.

Another example is a facial recognition system trained predomi-
nantly with images of men, which may then perform less accurately in
identifying women, particularly if it has not been exposed to a balanced
gender dataset during its training phase.

Understanding these sources of bias is crucial for developing more
equitable AI technologies. Addressing algorithmic bias involves ongo-
ing efforts from developers, regulators, and users to ensure AI systems
perform reasonably across all segments of society.

Measurement bias

Measurement bias refers to inaccuracies that occur when the met-
rics or indicators chosen to represent a concept do not effectively
capture it, or when these measurements vary inconsistently across dif-
ferent groups.

This bias can lead to misleading conclusions. An example of this
would be using body mass index as a proxy for an individual’s health
or fitness level. Body mass index might not accurately reflect a person’s
overall health because it doesn’t distinguish between muscle and fat
mass, nor does it account for distribution of fat or muscle. As a result,
athletes or individuals with high muscle mass might be incorrectly clas-
sified as overweight or obese.

Another example could be the use of arrest records as a measure of
criminal activity in different neighborhoods. This can be biased if police
patrols or enforcement intensity varies by area, leading to dispropor-
tionate crime rates in more heavily patrolled neighborhoods, rather
than an accurate reflection of actual crime rates across all areas.

100

Learning bias
Learning bias arises when the methodology and choices made in the

development of a model exacerbate performance discrepancies among
different demographic groups. This is often a result of a model’s cost
function optimizing for overall performance without ensuring fairness
and consistency across these groups, leading to unequal outcomes.

For example, a loan approval algorithm may disproportionately favor
applicants from certain socioeconomic backgrounds over others, not
because of their actual creditworthiness, but due to the data and param-
eters emphasized in the model.

Another example could be in language translation models. They
may perform well on widely spoken languages but poorly on dialects
or languages with fewer speakers. This occurs because the model was
optimized for the majority, thus sidelining the linguistic nuances and
accuracy needed for these less represented languages.

Deployment bias

Deployment bias occurs when there is a gap between the intended
and actual use of a technology, often because its creators did not fully
account for the real-world context in which it would operate.

An example of this is a facial recognition system designed for secu-
rity purposes, intended to identify persons of interest in crowded public
spaces. However, if this system is deployed in a manner that subjects
certain demographic groups to increased surveillance and scrutiny, its
use deviates significantly from its original security-enhancing purpose.

This shift not only raises ethical concerns but also demonstrates how
technology can be repurposed in ways that magnify biases and inequali-
ties, highlighting the consequences of not considering the broader
implications of technology deployment.

Feedback loop bias

Feedback loop bias happens when the system’s setup causes it to
influence its own training data, leading to skewed model outputs over
time.

An example of this is in predictive policing, where law enforcement
uses algorithms to predict crime hot spots. If a system directs more
police patrols to areas it predicts as high-risk, and the increased police
presence leads to more reported crimes in those areas. This occurs

101

simply due to higher surveillance (rather than an actual increase in crime
rate), as the system receives data that confirms its predictions. This, in
turn, causes the algorithm to further highlight these areas as high-risk,
creating a self-reinforcing cycle. The result is a disproportionate focus on
certain neighborhoods, amplifying initial biases and potentially neglect-
ing other areas that might also need attention.

 ໜ AI product development requires careful handling of private data and
addressing the opacity of AI algorithms to build user trust. Ensuring
algorithmic transparency and demonstrating how decisions are
made are crucial for fostering confidence in AI systems.

 ໜ AI reshapes work by automating routine tasks and augmenting
human capabilities. While automation reduces reliance on human
labor, augmentation enhances job performance by combining AI’s
data analysis and pattern recognition with human creativity and
decision-making.

 ໜ Establishing trust involves acknowledging AI’s imperfections, com-
municating performance metrics clearly, explaining decision-making
processes, and being transparent about limitations. This helps users
understand and have confidence in AI’s capabilities and reliability.

 ໜ Identifying and mitigating biases in AI models is essential to avoid
unfair outcomes. This includes recognizing historical, algorithmic,
representation, measurement, learning, deployment, and feedback
loop biases to ensure equitable performance across all user groups.

 ໜ Incorporating human oversight in AI processes ensures accuracy
and ethical use. Clear accountability structures, ethical guidelines,
and mechanisms for addressing issues are vital for responsible AI
deployment and maintaining user trust.

Let’s explore our expertise in building an AI portfolio that addresses
the diverse business needs of mid-sized companies and enterprises.

Key takeaways

102

07
Intellias AI portfolio

People who are crazy enough to think
they can change the world are the ones
who do.”
 – Steve Jobs

103

Compl-AI, a solution for ensuring
regulatory compliance of business
processes

Markets such as financial services and insurance, energy, phar-
maceuticals, and automotive operate within a highly regulated
environment. In recent years, the proliferation of laws, rules, and
regulations has been growing exponentially. In 2024, over 50 new regu-
lations have appeared for banks alone.

Apart from the increasing number of regulations, businesses often
face scenarios where regulations from different sectors intersect,
necessitating multiple review processes. For international entities like
banks, the compliance burden is compounded by the need to navi-
gate the distinct regulatory frameworks of each country. This escalating
complexity presents a significant challenge, particularly for smaller
companies that struggle to afford the expertise and tools required for
comprehensive regulatory compliance.

At Intellias, we are now piloting Compl-AI, an AI-based solution that
automatically analyzes regulations and assesses their impact on busi-
ness processes. Startups and mid-sized businesses can benefit from
these capabilities to streamline and enhance their compliance efforts:

 ໜ Regulatory analysis. Businesses can upload their process descrip-
tions to receive tailored regulatory assessments. The solution
provides insights into how specific regulations impact their opera-
tions, enabling proactive compliance management.

 ໜ Monthly updated library of regulations. Our clients gain access
to a regularly updated library of legal texts, serving as a resource
for regulatory analysis. This ensures that businesses stay informed
about the latest regulatory developments and can adapt their com-
pliance strategies accordingly.

 ໜ Monthly newsletter. Subscribers receive a regular newsletter
containing updates on new regulations, current analysis results,
and benchmark comparisons. The newsletter helps businesses
stay ahead of regulatory changes and benchmark their compliance
efforts against industry standards.

 ໜ Cloud-based installation. The solution is seamlessly integrated
into the cloud infrastructure of businesses, ensuring seamless
accessibility, scalability, and security. Cloud deployment facilitates

104

easy implementation and maintenance, minimizing IT overhead.

Get in touch with the Sales team to benefit from the early adoption
of Compl-AI and enhance your regulatory compliance strategy.

IntelliAssistant, a platform for enhancing
corporate productivity and employee
experience

As AI becomes integral for handling complex operational and tech-
nology challenges, its adoption is no longer a choice but a necessity to
safeguard the future of any business. AI assistants can reduce employee
learning curves and minimize operational overhead, freeing up resources
to focus on strategic initiatives. We incorporated our vision of AI-powered
assistants in IntelliAssistant, our propitiatory platform for building cus-
tom digital assistants and AI-powered chatbots tailored to specific needs.

IntelliAssistant’s ready-to-go infrastructure allows companies to swiftly
launch a digital assistant and integrate it into corporate systems via the
cloud, deploying a frontend, backend, and LLM model, while building
specific functionality that best serves specific business needs.

Our platform is an all-in-one AI assistant that boosts productivity
across the organization. It the tool that can enhance coding quality and
speed, reduce administrative burdens, and mitigate sensitivities due to
its advanced capabilities:

 ໜ Pre-trained model on client-specific content for superior efficiency

 ໜ Copilot functionality that speeds up coding tasks and everyday cross-
functional assistance capabilities

 ໜ Automated personalized interactions

 ໜ Compliant and secure ChatGPT functionality with rich communica-
tion features

 ໜ Cross-functional adaptability, including IT, talent management, sales,
marketing, and more

 ໜ Responsible data governance and ethical use of AI technology

https://intellias.com/contact/
https://intellias.com/ai-powered-digital-assistant-platform/

105

We piloted the use of IntelliAssistant with our 3500 employees, dem-
onstrating its effectiveness across these use cases:

 ໜ Smarter enterprise knowledge management. IntelliAssistant
centralizes access to an updated company knowledge repository
using AI, providing consistent, security-compliant insights from
trusted corporate-wide sources.

 ໜ Personalized upskilling/reskilling. Employees get personalized
learning recommendations based on their skills gaps, career aspira-
tions, and company goals. IntelliAssistant facilitates mentor-mentee
connections, using integrated knowledge repositories for all the
functions.

 ໜ AI-powered crisis management assistance. With emergency
assistance modules, Intellias manages crisis and force majeure
situations across the enterprise, sends timely alerts to employees
based on event criteria, and gathers safety data for proactive HR
assistance, ensuring effective crisis communication.

 ໜ AI for sales assistance and productivity. Our Sales team benefits
from AI-driven collateral provided by IntelliAssistant, which offers
curated content, real-time data analytics, and proficiency insights
from the enterprise-wide knowledge repository.

Connect with us to create a custom AI assistant that will automate
your workflows.

https://intellias.com/contact/

106

With the increasing complexity of software projects and the demand
for rapid development cycles, we recognized that traditional coding
practices needed a transformative boost. Inspired by the capabilities
of GitHub Copilot Business, we developed our own AI-powered coding
assistant to meet and even exceed these capabilities, all coming at a
more favorable price. As with many of our proprietary products that
we develop in-house to meet our specific needs, we named this tool
IntelliCopilot, signifying its role as a development companion for Intellias
engineers.

The primary goals of IntelliCopilot were twofold: first, to match the
capabilities and convenience of GitHub Copilot Business for Intellias engi-
neers, and second, to offer these benefits at a lower price.

Within just four months, we rolled out an MVP for IntelliCopilot,
significantly exceeding our initial goals. The result is a convenient AI cod-
ing assistant that offers secure, on-demand access to the ChatGPT-4
Turbo model, hosted on Azure. Impressively, IntelliCopilot proved to
be 3.8 times more cost-effective while maintaining a comparable level
of capabilities and convenience to its top-ranking counterpart. Unlike a
traditional subscription, IntelliCopilot’s pricing is based on the number of
tokens used, offering a more flexible and economical approach.

AI Copilot, a digital assistant for
software engineering

Feature IntelliCopilot GitHub Copilot Business

Chat interface

Code completions

Code highlights

Code insertion

Contextual understanding

Employee authentication

Helpers on context menu

107

IntelliCopilot is equipped with several advanced features:

 ໜ Integrated IDE tool. Unlike ChatGPT, IntelliCopilot is built into the
developer’s IDE, making it convenient for work and immediately
available within the same environment. The copilot is available for
the three most widely used IDEs: Visual Studio, Visual Studio Code,
and IntelliJ IDEA.

 ໜ Contextual file submission. Engineers can ask questions, request
text generation, or refactor code based on the content of one or
multiple files.

 ໜ Data privacy and security. Deployed on our Azure service,
IntelliCopilot operates within a secure sandbox environment. This
ensures that no Intellias data or client data is used for training the
model, maintaining a high level of data privacy and security.

 ໜ Model-agnostic flexibility. IntelliCopilot features a model-agnostic
design, allowing it to integrate with any popular AI model offered
by various AI technology vendors, including Anthropic, Ollama,
and Mistral. This flexibility ensures that IntelliCopilot can adapt to
the latest advancements in AI technology, providing continuous
improvement and staying at the forefront of AI-assisted coding.

Get in touch with us to boost productivity across your engineering
teams with a secure, model-agnostic, and cost-effective AI coding assistant.

 ໜ Intellias is taking proactive steps to develop AI tools to address vari-
ous business needs.

 ໜ Intellias has expanded its AI portfolio, which now includes Compl-AI
for regulatory compliance, IntelliAssistant for enhancing corporate
productivity and the employee experience, and IntelliCopilot for
improving software engineering efficiency.

By monitoring future AI trends and finding new areas for AI appli-
cation, Intellias will continue to grow its AI product portfolio to deliver
innovative solutions that meet evolving market demands and contribute
to technological advancement.

Key takeaways

https://intellias.com/contact/

108

08 The future of AI in
software development

The future belongs to those who
see possibilities before they become
obvious.”
 – John Sculley

109

Forward-thinking companies eembrace emerging trends to lead them
into the future. This might be a future where AI not only augments the
capabilities of software developers but also transforms the entire soft-
ware development lifecycle, making it more efficient, accessible, and
secure. With the evolution of AI technologies, staying ahead of these
trends will be crucial for development teams and businesses aiming to
leverage the full potential of AI.

Relying on decades of experience in software development and the
adoption of new emerging technologies, we foresee that AI evolution will
manifest in a multitude of ways.

Emerging trends

Enhanced code generation and auto-completion

Without a doubt, advancements in AI will change the way we write
and optimize code. Moving beyond traditional auto-completion fea-
tures, future AI copilots will offer enhanced code generation and
auto-completion capabilities. These AI assistants will be not merely
reactive but proactive, leveraging context awareness to comprehend
project-specific nuances.

Being aware of the developer’s intent and the existing code base
styles, future AI copilots will generate code that aligns closely with the
task at hand. They will deeply understand the context within which they
operate. This means AI copilots will be able to grasp the intricacies of
the project they will assist with and anticipate developer needs, making
code suggestions that seamlessly integrate with the code base.

As technology continues to evolve, we will see an expansion of
the languages and frameworks supported by AI. This expansion
will not only cover mainstream languages and frameworks but will
also accommodate niche or emerging ones. By embracing a wider
spectrum of languages and frameworks, AI copilots will cater to the
diverse needs of developers, irrespective of the specific technolo-
gies. Consequently, developers will leverage these AI copilots across
a broader range of projects, enhancing efficiency and productivity in
software development.

110

AI-powered testing and debugging
We believe that AI-powered testing and debugging will transform

quality control in software development. Through automated bug
detection, AI will predict and identify potential bugs and vulnerabilities
in real-time, even before code execution. By analyzing patterns and
historical data, AI algorithms will proactively detect issues, providing
developers with early warnings and opportunities for preemptive action.

Another emerging trend is test case generation by AI. AI copilots will
automate test case generation, ensuring comprehensive coverage while
saving significant time for developers. The copilots will adaptively learn
from past test outcomes, enabling continuous improvement in future
test case generation strategies. Such iterative learning will enhance the
effectiveness of testing procedures, ultimately leading to better of soft-
ware products.

Natural language to code conversion

Natural language to code conversion has become a huge leap for-
ward in programming capabilities. Due to advancements in Natural
Language Processing (NLP), developers will describe functionalities in
plain language, while AI copilots will translate these descriptions into
syntactically correct and efficient code. This breakthrough will make
programming more accessible, non-developers will be able to articulate
ideas in their native language, reducing the barrier to entry for coding
novices.

We assume that the impact of this capability will extend beyond the
traditional development cycle. By bridging the gap between natural
language and code, non-developers can contribute directly to the devel-
opment workflow. This broader application scope will democratize
software creation, empowering individuals from diverse backgrounds
to seamlessly contribute ideas and insights. As a result, the collab-
orative potential of software development will be greatly enhanced,
leading to more inclusive and innovative outcomes.

AI-driven project management and planning

Given our current understanding, AI-driven project management and
planning will redefine software development methodologies. Leveraging
historical data, AI will enable predictive project management, allow-
ing teams to forecast project timelines accurately, anticipate potential
bottlenecks, and optimize resource allocation for maximum efficiency.

111

With the pace of innovation, AI copilots will facilitate real-time adap-
tation within project workflows. By continuously monitoring progress
and external factors, AI copilots will offer timely suggestions for adjust-
ing project scopes and timelines. This adaptive approach will ensure
that projects remain agile and responsive, ultimately leading to greater
success rates and higher levels of client satisfaction.

Seamless integration of AI into development
environments

From our current perspective, it appears probable that integration of
AI into development environments will transform the way software is
created. AI copilots will play a central role in this transformation. They
will seamlessly merge into development environments, providing con-
tributors with a unified development experience. This integrated
approach will blend coding, testing, and deployment tasks into a cohe-
sive workflow, streamlining the entire development process.

We believe that another emerging trend will be the flexibility to tailor
AI assistants to suit the individual preferences of software developers.
These customizable AI copilots will help developers craft personalized
development environments. By aligning with specific workflow pref-
erences and project needs, these customized assistants will enhance
productivity and foster a more efficient and effective development
process.

Ethical and secure coding practices

Ethical and secure coding practices have always been a priority in
software development. AI’s role in security will also expand, with
AI-driven tools being increasingly used to enforce best practices. These
tools will automatically review code, identifying security vulnerabilities,
and ensuring adherence to industry standards. By integrating AI into
the security process, developers will enhance the robustness of their
applications and mitigate potential risks more effectively.

As AI assumes a more significant role in coding, there will be a grow-
ing emphasis on ethical considerations. Ensuring that AI-generated
code aligns with ethical guidelines is crucial. This will entail imple-
menting AI tools that prevent the creation of biased or discriminatory
software. By prioritizing ethical code generation, developers will con-
tribute to building more inclusive and equitable technology ecosystems.

112

Collaborative AI development
Peering into the future, we envision that through enhanced collabo-

ration tools, AI will usher in a new era of seamless teamwork. These
tools will enable real-time code collaboration, intelligent merging of code
changes, and suggestions for conflict resolution. By integrating AI into
a collaboration framework, software development will become more
efficient, with smoother processes for managing and integrating contri-
butions from multiple team members.

Perhaps most importantly, AI will bridge the gap between different
disciplines within development teams. By facilitating cross-disciplinary
collaboration between software developers, data scientists, designers,
and domain experts, AI will break down silos and foster a more inte-
grated approach to project development. This holistic collaboration will
ensure that diverse perspectives are leveraged effectively, leading to
more innovative solutions and enhanced project outcomes.

Preparing for what’s next

The underlying AI and machine learning technologies that power
enhanced code generation and auto-completion are advancing
rapidly. As a result, these technologies are continuously improving
in terms of understanding context, predicting developer intentions,
and generating more accurate and efficient code. As AI and machine
learning technologies become more sophisticated, the utility and effec-
tiveness of code generation tools will only increase.

The trend towards supporting a broader range of programming
languages and frameworks will make enhanced code generation and
auto-completion tools applicable to a wider array of software projects.
This means that regardless of the specific technology stack, developers
will benefit from AI assistance, making this trend impactful across the
entire software development industry.

113

 ໜ AI will accelerate writing code, providing proactive, context-aware
code suggestions that integrate seamlessly with project-specific
requirements and styles.

 ໜ AI will transform quality control by identifying bugs in real time
and automating test case generation, which will lead to higher quality
software products and more efficient testing procedures.

 ໜ NLP advancements will allow developers and non-developers to
describe functionalities in plain language, making software engi-
neering more accessible.

 ໜ AI will enable predictive project management by forecasting time-
lines, anticipating bottlenecks, and optimizing resource allocation,
while facilitating real-time adaptation within project workflows for
greater agility.

Let’s proactively watch these trends and identify areas that can be
enhanced with AI solutions developed by Intellias as well as other mar-
ket leaders to get real-time guidance, find inspiration, and be more
productive.

Key takeaways

114

Afterword
In closing, our AI journey at Intellias has been like following a series

of intricate recipes—each step contributing to continuous growth and
innovation. As we conclude this book, we reflect on the strides we’ve
made in enhancing our development processes and internal systems
with AI capabilities, much like perfecting a complex dish. Our commit-
ment remains unwavering—to help our clients achieve the utmost
success in their development endeavors, continuously identifying areas
where AI can bring profound value, just as a master chef discovers new
ingredients to enhance a recipe.

We extend our sincerest gratitude to you, our readers, for joining
us on this exploration and experiencing firsthand the transformative
potential of AI outlined within these pages.

As we turn the final page of this book, we invite you to stay tuned for
future editions, where we will continue to delve deeper into the ever-
evolving landscape of AI. We will share new insights, discoveries, and
advancements, much like unveiling new recipes in a beloved cookbook.
Until the next edition of the book comes out, may the possibilities of AI
continue to inspire and propel us toward a future of endless innovation
and growth!

AI engineering productivity cookbook v.2.0

115© Intellias 2024

Whether you’re a Software Developer or a business owner interested in increasing
productivity through AI, Coding with AI cookbook is your companion in exploring the
power of AI for faster, smarter, and better coding. The book summarizes practical
insights of Intellias Technology Office, who researched into AI capabilities and tools
on real-life projects.

 ໜ Discover ways to optimize coding tasks of Software Developers, Test Automation
and DevOps Engineers

 ໜ View on-the-project code snippets for Java, JavaScript, and .NET stacks

 ໜ Find out which AI tool is better: GitHub Copilot Business, Tabnine or Amazon
CodeWhisperer

 ໜ Explore strategies for automating processes like documentation, debugging, and
code optimization

 ໜ Gain insights into AI-related ethical considerations and security measures

 ໜ Learn about Intellias AI offerings for ensuring regulatory compliance and enhanc-
ing coding productivity and employee experience.

	Foreword
	From AI theory to practice
	From early pioneers to modern breakthroughs
	Paradigm shift with generative AI
	Which AI assistant to choose?
	Key takeaways

	Coding with GitHub Copilot Business
	Project scope and tool stack
	Code completion and suggestions
	Refactoring and optimization
	Debugging and bug fixing
	Key takeaways

	Advanced AI capabilities
	AI in software development
	AI for DevOps
	AI-driven no-code and low-code platforms
	Key takeaways

	Collaborative development with AI
	Pair programming with AI
	Code review and quality assurance
	Knowledge sharing and documentation
	Key takeaways

	Secure use of AI
	Privacy and security risks
	AI risks mitigation
	Key takeaways

	Building AI products from business and user perspectives
	Two main ways of using AI
	Trust in AI by design
	Bias in AI models
	Key takeaways

	Intellias AI portfolio
	Compl-AI, a solution for ensuring regulatory compliance of business processes
	IntelliAssistant, a platform for enhancing corporate productivity and employee experience
	AI Copilot, a digital assistant for software engineering
	Key takeaways

	The future of AI in software development
	Emerging trends
	Key takeaways

	Afterword

